Протеолитическая активность: определение, функции, значение для организма и классификация протеаз

Идентификация бактерий по видам

Ученые разделяют бактерии по видам, вернее, пытаются это сделать. Предположительно (ну не известно науке точно!) существуют миллионы видов бактериальных клеток. Но «узнать в лицо» наука может только несколько десятков тысяч, характеристики которых хорошо изучены. Например, бифидобактерии и лактобактерии необходимы для пищеварения, свойства молочнокислых бактерий и дрожжевых грибков используются в промышленности, патогенные микроорганизмы несут болезни или вызывают пищевые отравления, образуя опасные токсины и т. д.

Для видовой идентификации бактерий нужно знать следующие их свойства:

  • морфологические (форма, строение клетки);
  • культуральные (способ питания, условия размножения, т. е факторы роста бактериальной культуры);
  • тинкториальные (реакция на красители, помогающая определить степень опасности для здоровья);
  • биохимические (расщепление питательных веществ, выделение продуктов жизнедеятельности, синтез ферментов, белков, витаминов);
  • антигенные (от англ. antibody-generator – «производитель антител»), вызывающие иммунную реакцию организма.

Морфологические свойства определяют с помощью микроскопии (рассматривая в обычный или электронный микроскоп). Культуральные (биологические) свойства проявляются во время роста культур на питательных средах. Идентификация по биохимическим свойствам нужна для определения отношения клетки к кислороду (способ дыхания), ее ферментативных и редуцирующих (восстановительных) свойств (редукция – химический процесс отнятия кислорода или замена его на водород). Кроме того, биохимические исследования изучают образование отходов жизнедеятельности бактерий (токсинов) и их влияние на окружающую среду.

Анализ всех этих свойств в совокупности помогает определить вид бактериальной клетки. Такая идентификация дает возможность отличать «хорошие» бактерии, приносящие пользу, от вредных болезнетворных микробов с отрицательными свойствами. Строго говоря, это разделение достаточно условно. Один и тот же вид бактерий может оказывать положительное или отрицательное действие в зависимости от ситуации. Например, кишечная палочка является частью микрофлоры здорового человека и принимает активное участие в пищеварении. Но стоит популяции этих бактерий разрастись выше граничных параметров – возникает опасность отравления токсинами, опасными для здоровья.

Анаэробные гнилостные микроорганизмы

Clostridium putrificum (рис. 40) — энергичный возбудитель анаэробного разложения белковых веществ, осуществляющий это расщепление с обильным выделением газов — аммиака и сероводорода. Cl. putrificum довольно часто встречается в почве, воде, в полости рта, в кишечнике животных и на разных гниющих продуктах. Иногда может быть обнаружен и в консервах. Cl. putrificum — подвижные палочки с перитрихиальным жгутованием, удлиненные и тонкие (7-9 х 0,4-0,7 мкм). Встречаются и более длинные клетки, соединенные в цепочки и одиночные. Температурный оптимум развития клостридия 37 °С. Развиваясь в глубине мясопептонного агара, он образует хлопьевидные рыхлые колонии. Споры шаровидные, расположены терминально. При спорообразовании в месте возникновения споры клетка сильно раздувается. Спороносящие клетки Cl. putrificum напоминают спороносящие клетки бациллы ботулизма.

Термоустойчивость спор Cl. putrificum довольно высокая. Если при производстве консервов споры не будут уничтожены, при хранении готовой продукции на складе они могут развиться и вызвать порчу (микробиологический бомбаж) консервов. Сахаролитическими свойствами Cl. putrificum не обладает.

Clostridium sporogenes (рис. 41) — по морфологическим признакам представляет собой довольно крупную палочку с закругленными концами, легко образующую цепочки. Микроб очень подвижен благодаря перитрихиально расположенным жгутикам. Название Clostridium sporogenes, данное И. И. Мечниковым (1908 г.), характеризует способность этого микроба быстро образовывать споры. Через 24 ч под микроскопом можно видеть много палочек и свободно лежащих спор. Через 72 ч процесс спорообразования заканчивается и вегетативных форм совсем не остается. Споры микроб образует овальные, расположенные центрально или ближе к одному из концов палочки (субтерминально). Капсул не образует. Оптимум развития 37 °С.

Cl. sporogenes — анаэроб. Токсическими и патогенными свойствами не обладает. В анаэробных условиях на агаровых средах образует поверхностные мелкие, неправильной формы, вначале прозрачные, а затем превращающиеся в непрозрачные желтовато-белые колонии с бахромчатыми краями. В глубине агара колонии образуются «мохнатые», круглые, с плотным центром. Аналогично в анаэробных условиях микроб вызывает быстрое помутнение мясопептонного бульона, газообразование и появление неприятного гнилостного запаха. В ферментативном комплексе Clostridium sporogenes содержатся очень активные протеолитические ферменты, способные расщеплять белок, до последней его стадии. Под действием Clostridium sporogenes молоко пептонизируется уже через 2-3 дня и рыхло свертывается, желатина разжижается. На средах с печенью иногда образуется черный пигмент с выделяющимися белыми кристаллами тирозина. Микроб вызывает почернение и переваривание мозговой среды и резкий гнилостный запах. Кусочки ткани быстро перевариваются, разрыхляются и расплавляются почти до конца в течение нескольких дней.

Clostridium sporogenes обладает также и сахаролитическими свойствами. Распространенность этого микроба в природе, резко выраженные протеолитические свойства, высокая термоустойчивость спор характеризуют его как одного из главных возбудителей гнилостных процессов в пищевых продуктах.

Cl. sporogenes является возбудителем порчи мясных и мясо-овощных консервов. Чаще всего подвергаются порче консервы «Мясо тушеное» и первые обеденные блюда с мясом и без мяса (борщ, рассольник, щи и др.). Наличие небольшого количества спор, оставшихся в продукте после стерилизации, может вызвать порчу консервов при хранении в условиях комнатной температуры. Наблюдается сначала покраснение мяса, затем почернение, появляется резкий гнилостный запах, при этом часто наблюдается бомбаж банок.

В гнилостном разложении белков принимают участие и различные плесневые грибы и актиномицеты — Penicillium, Mucor mucedo, Botrytis, Aspergillus, Trichoderma и др.

Значение процесса гниения

Общебиологическое значение процесса гниения огромно. Гнилостные микроорганизмы являются «санитарами земли». Вызывая минерализацию громадного количества белковых веществ, попадающих в почву, осуществляя разложение трупов животных и растительных отбросов, они производят биологическую очистку земли. Глубокое расщепление белков вызывают споровые аэробы, менее глубокое — споровые анаэробы. В природных условиях этот процесс совершается поэтапно в содружестве многих видов микроорганизмов.

Но в пищевом производстве гниение является вредным процессом и наносит большой материальный ущерб. Порча мяса, рыбы, овощей, яиц, фруктов и других продуктов питания наступает быстро и протекает очень энергично, если хранить их незащищенными, в условиях, благоприятных для развития микробов.

Лишь в отдельных случаях в пищевом производстве гниение может быть использовано как полезный процесс — при созревании соленой сельди и сыров. Используется гниение в кожевенном производстве для швицевания шкур (удаление шерсти со шкур животных при выработке кож). Зная причины процессов гниения, люди научились защищать пищевые продукты белкового происхождения от их распада путем применения самых разнообразных методов консервирования.

Ферменты и токсины бактерий (биохимическая активность)

Микроорганизмы вырабатывают белковые вещества – ферменты (лат. «закваска») или энзимы (греч. «закваска»), которые служат катализаторами (ускорителями) в абсолютно всех биологических процессах (обмен веществ и энергии). Причем каждый отдельно взятый фермент отвечает только за один процесс превращения одного соединения в другое. Ферменты делят на:

  • эндоферменты – внутриклеточные вещества, принимают участие в метаболизме клетки.
  • экзоферменты – внеклеточные (выделяемые в окружающую среду), они осуществляют переваривание снаружи бактериальной клетки.

Токсины бактерий

Свойства микроорганизмов выделять определенные ферменты используют для идентификации вида одноклеточных, так как это постоянный и неизменный признак, присущий только данной разновидности клеток. Различают:

  1. Сахаролитические свойства клетки – способность ферментировать (разлагать) углеводы с выделением химической энергии. Например, при спиртовом брожении ферменты дрожжей разлагают сахар на этиловый спирт и углекислый газ.
  2. Протеолитические свойства микроорганизмов – ферментация белков и пептона (крупные белковые фрагменты, образующиеся на начальной стадии переваривания молока и мяса под действием ферментов). Клетки выделяют во внешнюю среду протеолитические ферменты, которые расщепляют белки до промежуточных продуктов (пептоны, аминокислоты) и/или до конечных продуктов распада (сероводород, аммиак). От протеолитических ферментов зависит усвоение белков, свертывание крови.

Биохимическая идентификация дает возможность различать практически идентичные виды бактерий, строение и внешний вид которых неотличимы друг от друга. Например, патогенные энтеробактерии насчитывают сотни видов, определить конкретного виновника заболевания можно только с помощью изучения биохимических свойств.

Вредные отходы жизнедеятельности клетки (токсины) крайне опасны, тем не менее важны. При попадании токсинов в организм происходит выработка антител, которые идентифицируют и нейтрализуют чужеродные объекты. Бактериальные токсины вызывают нарушения обменных и других процессов в клетке, этим объясняется их высокая активность даже при небольшом количестве токсина в организме. Различают:

  • экзотоксины (выделяются в окружающую среду, очень опасны);
  • эндотоксины (структурные компоненты клетки, попадают в окружающую среду только после гибели бактерии, менее опасны, чем экзотоксины).

Некоторые бактерии обладают гемолитическими свойствами, т. е. выделяют токсины, разрушающие эритроциты (гемолизины). В естественном процессе обновления эритроцитов гемолитические свойства клеток необходимы, но они могут стать опасными при патологическом развитии процесса.

Бактерии вездесущи и многообразны. Есть «добрые», полезные микроорганизмы, но есть и вредные, патогенные микробы, провоцирующие болезни и выделяющие опасные токсины. Человек научился использовать полезные свойства микроорганизмов в биотехнологиях для улучшения качества жизни. Медицина активно (и иногда эффективно) борется с возбудителями болезней. В силах любого человека защитить себя от вредных бактерий (обычные правила гигиены) и взять все лучшее от многообразия бактериального мира.

Общие признаки микроорганизмов

При изучении одноклеточных первый этап идентификации опирается на общие свойства бактерий, присущие всем прокариотам (безъядерным клеткам):

  • микроскопические размеры (не видны невооруженным взглядом);
  • огромная скорость обмена веществ и, как следствие, роста и размножения;
  • быстрая адаптация к изменившимся условиям существования;
  • способность меняться в короткие сроки с передачей наследственности;

Еще одна черта, общая для всех одноклеточных, – широкое распространение. Микроорганизмы существуют везде – в воде, воздухе, земле, организме человека и животных. Граничные условия их обитания простираются от температур в сотни градусов и давления воды на глубине в несколько километров до разреженного воздуха и отрицательных температур стратосферы. Правда, любопытные исследователи нашли место на земле, где не так-то просто найти бактерии, – отдельные участки пустыни Атакама (Южная Америка). Эта земля не видела дождя десятки, а возможно, и сотни лет. Даже бактерии сдались – вода необходима любой форме белковой жизни.

Рост и размножение

Для точной идентификации и промышленного производства необходимы чистые культуры бактерий – популяция, выращенная из единичной клетки в лабораторных условиях. А для этого нужно знать их биологические свойства – в каких условиях и каким образом растут и размножаются микроорганизмы. Рост – это увеличение клеточной массы и всех ее структур, а размножение – увеличение количества клеток в колонии.

Более сложный метод – генетическая рекомбинация, напоминающая половое размножение. Суть метода в том, что часть ДНК попадает в клетку извне (при контакте бактерий между собой, с помощью бактериофагов или в результате поглощения генетического материала погибших клеток). В результате такой метод дает две генетически измененных клетки, несущих информацию от обоих «родителей». Свойства измененной клетки могут значительно отличаться от ее предшественниц. Такой метод размножения позволяет бактериям приспосабливаться к изменившимся условиям, возможно, именно он послужил основой возникновения разумной жизни на планете.

Кроме того, рекомбинантный метод размножения облегчает генетические исследования. Бактерии меняются в очень короткие сроки и при этом сохраняют наследственность. Это дает возможность проследить за несколькими поколениями клетки и оценить положительные и отрицательные изменения в ее структуре, поведении, свойствах.

Как выглядят бактерии

Внешний вид и параметры клетки влияют на ее свойства – подвижность, функциональные особенности, крепление к поверхности. По форме микроорганизмы разделяются на:

  1. Кокки – шаровидные или округлые бактерии. Они различаются по количеству клеток в сцепке:
  • микрококки (единичная клетка);
  • диплококки (две клетки, соединенные между собой);
  • тетракокки (четыре соединенные клетки);
  • стрептококки (соединенные в длину в виде цепи);
  • сарцины (пласты или пакеты из 8, 12, 16 и более штук);
  • стафилококки (соединение имеет форму виноградной грозди).

2. Палочки различают:

  • по форме концов: плоские (обрубленные), округлые (полусфера), острые (конус), утолщенные;
  • по характеру соединения: одиночные, пары, цепочки (стрептобактерии).

3. Спирали имеют изогнутую или спиральную форму (строго говоря, эти бактерии тоже относят к палочковидным). Они выделяются формой и количеством завитков:

  • вибрионы – немного выгнутые;
  • спириллы – один или несколько витков (до четырех);
  • свыше четырех завитков имеют борелли (от 4 до 12) и (любимое ругательство доктора Быкова, возбудители сифилиса) трепонемы (от 14 до 17 мелких витков);
  • лептоспиры похожи на латинскую «S».

Кроме этого, существуют звездочки, кубики, С-образные и другие формы клеток. Более того, один и тот же вид бактерий в зависимости от обстоятельств может менять форму, причем значительно. Например, молочнокислые бактерии представляют собой палочки, но одни представители вида могут иметь форму очень короткой палочки (почти шара), тогда как другие вытягиваются в длину, приближаясь к нитевидным клеткам. Длина в данном случае зависит от состава среды, наличия и процентного содержания кислорода, способа культивирования (искусственного выращивания) микроорганизмов.

С размерами одноклеточных немного проще:

  • самые маленькие (бруцеллы);
  • средние (бактероид, кишечная палочка);
  • большие (бациллы, клостридии).

Факультативноанаэробные бактерии

Палочка протея, или вульгарный протей (Proteus vulgaris) (рис. 39). Этот микроб является одним из наиболее типичных возбудителей гниения белковых веществ. Он часто встречается на самопроизвольно загнившем мясе, в кишечнике животных и человека, в воде, в почве и пр. Клетки этой бактерии отличаются большой полиморфностью. В суточных культурах на мясо- пептонном бульоне они мелкие (1-3 х 0,5 мкм), с большим количеством перитрихиально расположенных жгутиков. Затем начинают появляться извитые нитевидные клетки, достигающие в длину 10-20 мкм и более. Благодаря такому разнообразию в морфологическом строении клеток бактерия и была названа по имени морского бога Протея, которому древнегреческая мифология приписывала способность менять свой образ и превращаться по желанию в различных животных и чудовищ.

Как мелкие, так и крупные клетки протея обладают сильным движением. Это придает колониям бактерии на твердых средах, характерную особенность «роения». Процесс «роения» заключается в том, что из колонии выходят отдельные клетки, скользят по поверхности субстрата и на некотором расстоянии от нее останавливаются, размножаются, давая начало новому росту. Получается масса мелких, едва видимых простым глазом беловатых колоний. От этих колоний снова отделяются новые клетки и на свободной от микробного налета части среды образуют новые центры размножения и т.д.

Вульгарный протей — грамотрицательный микроб. Оптимальная температура его развития 25-37°С. При температуре около 5 °С он прекращает свой рост. Протеолитическая способность протея очень велика: он разлагает белки с образованием индола и сероводорода, вызывая резкое изменение кислотности среды — среда становится сильнощелочной. При развитии на углеводных средах протей образует много газов (CO2 и H2).

В условиях умеренного доступа воздуха при развитии на пептонных средах некоторой протеолитической способностью обладает кишечная палочка (Escherichia coli). Характерно при этом образование индола. Но кишечная палочка не является типичным гнилостным микроорганизмом и на углеводных средах в анаэробных условиях вызывает нетипичное молочнокислое брожение с образованием молочной кислоты и целого ряда побочных продуктов.

Определение протеолитической активно­сти микробов

а) На желатине. Мясо-пептонный желатин разливают в пробирки столбиком по 5— 6 мл. Посев производят уколом, погружая петлю с исследуе­мой культурой в глубь питательной среды до дна пробирки. Микробы, способные расти при низкой температуре, остав­ляют стоять в комнате при 20—22°С. Остальные посевы ин­кубируют в термостате при 37°С. Вместе с опытными про­бирками в термостат ставят одну или две пробирки с неза­сеянным желатином для контроля. При температуре 37°С желатин плавится, поэтому после инкубации пробирки, вы­нутые из термостата, опускают в холодную воду или ставят в холодильник. После застудневания желатина в контроль­ных пробирках приступают к просмотру роста и учету изме­нений в питательной среде опытных пробирок. Там, где под действием фермента желатиназы произошло расщепление белков желатина, отмечается разжижение питательной сре­ды. Пробирки, в которых после суточного инкубирования среда остается без изменения, оставляют в термостате. Наблю­дение за изменением среды ведется в течение 20 суток. В прото­коле исследования обязательно отмечают день появления признаков разжижения среды, степень и характер ее разжи­жения.

б) На молочном агаре Эйкмана. Молочный агар Эйкмана, разлитый и остуженный в чашках Петри, засевают исследуемой культурой микробов. Посев делают петлей или шпателем так, чтобы получить изолированные ко­лонии. Через 24—48 ч инкубации в термостате культуры, продуцирующие протеолитический фермент, обусловливают пептонизацию молочного белка — казеина, в результате чего вокруг таких колоний образуются прозрачные зоны, четко выделяющиеся на общем молочно-мутном фоне среды.

в) На свернутой кровяной сыворотке. Куль­туру исследуемых аэробных микробов засевают на чашки, анаэробных — уколом в столбик свернутой лошадиной сыво­ротки, инкубируют в термостате при 37°С. Штам­мы, продуцирующие протеолитические ферменты, разжижая питательную среду, образуют углубления вокруг колоний или на поверхности столбика среды.

г) В бульоне с куриным яичным белком. В пробирку с мясо-пептонным бульоном или бульоном Хоттингера, содержащим кусочек свернутого куриного белка, вносят одну петлю исследуемой культуры микроба. Посевы просматривают ежедневно в течение 5 дней. Протеолитически активные культуры микробов расщепляют коагу­лированный яичный белок; кусочки белка, содержавшиеся в среде, заметно уменьшаются в размере, превращаясь в крошкообразную массу, или полностью растворяются.

Аналогичным образом проявляются протеолитические свойства микробов в средах с кусочком вареного мяса.

Некоторые виды патогенных микробов с выраженной про­теолитической активностью обладают способностью расщеп­лять белок и пептон до продуктов глубокого распада: индо­ла, сероводорода, мочевины и аммиака.

При определении видов и дифференциации разновидно­стей патогенных микробов наибольшее значение имеет выяв­ление двух первых продуктов: индола и сероводорода.

Сахаролитическая микрофлора (бифидобактерии, лактобактерии)

В организме человека только клетки мозга и клетки микрофлоры могут утилизировать углеводы без инсулина.

Пищевые волокна и крахмал не перевариваются ферментами желудочно-кишечного тракта в желудке и тонком кищечнике и не являются источником энергии. Они подвергаются бактериальной ферментации сахаролитическими видами бактерий (бифидо- и лактобактерии, некоторые кокки, пропионобактерии).

Ряд органических соединений (желчные кислоты, стероиды, некоторые токсичные соединения и бактерии) могут обратимо связываться с волокнами и выводиться из организма.

Крахмал и пищевые волокна способствуют росту сахаролитических видов бактерий в толстом кишечнике: бифидобактерий, лактобактерий, некоторых кокков, пропионобактерий, метаболические функции которых способствуют поддержанию нормального обмена веществ и нейтрализуют негативные влияния протеолитической флоры.

Протеолитическая микрофлора (бактероиды, протей, клостридии, растелла, кишечная палочка)

Протеолитическая микрофлора осуществляет утилизацию непереваренных молекул белка.

При превышении нормы по протеолитической флоры развивается гнилостная диспепсия. В этих случаях рекомендуется ограничить употребление продуктов, содержащих животный белок (яиц, мяса, рыбы), и 2-3 раза в неделю соблюдать лактовегетарианскую диету ( для наращивания сахаролитической флоры).

Условно-патогенная протеолитическая флора при превышении норм может вызывать воспалительные заболевания

При превышении по норме клостридии вызывают разжижение стула, понос. Косвенный — признак повышенное газообразование, тухлый запах кала, (симптомы гнилостной диспепсии).

Уменьшение нормальной кишечной палочки ведет за собой к снижению количества бифидобактерий. На начальном этапе эшерихиоза достаточно восстановить бифидофлору Бифидум БАГ (жидким концентратом бифидобактерий) и кишечная палочка сама восстанавливается.

Кишечная палочка со сниженной ферментативной активностью (лактозонегативная ) – признак начинающегося дисбактериоза, и косвенный признак возможного присутствия в кишечнике глистов или простейших. Превышение нормы 10*5 КОЕ/г вызывает инфекции мочевых путей, брюшной полости, кишечника и верхних дыхательных путей.

Протей провоцирует инфекции мочевых путей.

Бактероиды при превышении нормы может вызвать инфекции брюшной полости, малого таза, желчных путей.

Особенности дыхания и питания клетки

В зависимости от отношения к кислороду бактерии различаются на:

  1. Анаэробы – микроорганизмы, получающие энергию при отсутствии кислорода. Различают облигатные (строгие) анаэробы, не переносящие кислорода, и факультативные анаэробы (большинство патогенных микробов), основным методом получения энергии которых является бескислородный вариант, но они могут существовать и при доступе кислорода.
  2. Аэробы – клетки, живущие только в кислородосодержащей среде. Строгие аэробы требуют 20% кислорода в атмосфере, микроаэрофилы довольствуются гораздо меньшим содержанием кислорода, но основной метод дыхания у них остается таким же, как и у аэробных клеток.

Идентификация по способу дыхания и питания важна для создания комфортных условий при выращивании бактериальных культур на искусственных средах и в биотехнологиях.

Способы получения энергии (питания) зависят от свойств клетки:

  1. Автотрофы («самопитающиеся») получают энергию из неорганических соединений, перерабатывая их в органику. Их разделяют на фототрофы, берущие энергию солнца, и хемотрофы, использующие энергию химических реакций. К последним относятся нитрифицирующие бактерии, связывающие азот в пригодные для растений соединения, серобактерии, железобактерии и т. д.
  2. Гетеротрофы («иная пища») используют уже готовые органические вещества. Сапрофиты утилизируют органические отходы, возвращая использованные химические компоненты в окружающую среду. Паразиты берут питание от живых клеток, лишая их возможности свободно расти.

Благодаря разнонаправленным полезным свойствам бактерий получается замкнутый цикл – автотрофы создают органические вещества, используя энергию солнца или неорганические соединения, гетеротрофы (сапрофиты) разлагают органику, возвращая в природу химические компоненты, пригодные для дальнейшего использования.

Понравилась статья? Поделиться с друзьями:
Умный ребенок
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: