Закон электромагнитной индукции (закон фарадея)

Закон  фарадея: что это, формулировка, границы применимости

Николас Джозеф Каллан изобрел индукционную катушку

Ученые занимавшиеся изучением электричества подхватили идею ирландского священника Николас Джозеф Каллан (1799-1864) по изменению взаимно связанной индукции.

После посвящения в сан Каллан изучал физику в Римском университете, который окончил в 1826 году. По возвращении в Ирландию он был назначен профессором естественной философии (которую мы теперь называем физикой) в Колледже Святого Патрика в Мейнуте, недалеко от Дублина, где он основал свою лабораторию. В 1836 году Каллан построил первое устройство, способное эффективно эксплуатировать взаимную связь электричества. Его устройство состояло из двух катушек: с малым числом витков и большим из хорошо изолированных проводов, намотанных на железный сердечник. Резкое прекращение тока первой катушки вызывало высокое напряжение во второй (возможно, до нескольких десятков киловольт).

В 1854-1855 годах Каллан разработал электрохимические ячейки, которые собрал в большие батареи для питания электромагнитов. Каллан также построил ранние электрические двигатели и в 1853 году запатентовал гальванический процесс, направленный на предотвращение окисления железа. Тем не менее он не пренебрегал своим религиозным призванием, написав около 20 книг на подобные темы. Каллан построил свое устройство, потому что ему нужны были высокие напряжения в его экспериментах, трансформируя их из низкого напряжения, обеспечиваемого его батареями, но он не смог внедрить изобретения в широкую эксплуатацию.

Научные достижения

Изучая взаимосвязь различных видов энергии, Фарадей решил превратить магнетизм в электричество. И эту задачу он выполнил с блеском. Майкл пытался использовать свойства электромагнита в обратном направлении, чтобы с помощью магнита произвести электрический ток. В августе 1831 года ученому удалось обнаружить явление электромагнитной индукции, что помогло ему создать первый на планете электрогенератор. Современные устройства бытового и промышленного назначения стали сложнее на несколько порядков, но они продолжают работать на основании принципов, заложенных гениальным английским физиком. Так функционируют локомотивы и вырабатывают энергию генераторы на электростанциях.

В поддержку открытого закона электромагнитной индукции ученый создал наглядное устройство для трансформации механической энергии в электрическую, названное диск Фарадея. В силу ряда особенностей оно не получило широкого применения, но сыграло важную роль в дальнейших научных изысканиях.

Диск Фарадея — первый электромагнитный генератор. При вращении диска вырабатывается постоянное напряжение

До Фарадея человечеству были известны два проявления электрической энергии – статическое электричество и гальванический ток. Оба из-за своих особенностей не смогли найти широкое практическое применение, чего не скажешь об индукционном электричестве. Оно имеет значительное напряжение, действует постоянно и проявляется в больших количествах.

В отличие от Эдисона, Майкла совершенно не интересовали прикладные возможности его открытий – главное для него было как можно глубже изучить природу. Он принципиально не патентовал свои изобретения и отказывался от выгодных коммерческих предложений.

История открытия закона Фарадея

Майкл Фарадей – английский ученый физик, проводивший опыты с электричеством. До открытия Фарадея считалось, что между магнитным и электрическим полями нет никакой связи. Фарадей обосновал доказательство того, что магнитное поле вызывает электрический ток. Это явление получило название электромагнитной индукции, а закон стал одним из основных в электродинамике.

Примечание

Фарадей был не единственным ученым, который задумался о связи электрического и магнитного поля. Одновременно с ним над этими явлениями работал Джозеф Генри. Но Фарадей все-таки первым сформулировал и опубликовал результаты своих исследований.

Электромагнитная индукция – появление электрического тока, поля или электрической поляризации в условиях изменения во времени магнитного поля или при движении материальной среды в нем.

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут

К своему открытию Фарадей шёл порядка десяти лет. В 1831 году ученый провел эксперимент, позволивший ему открыть элеткромагнитную индукцию. Он намотал на один железный сердечник две катушки, автономные друг от друга. Одна катушка была подключена к источнику тока, вторая к гальванометру – прибору, измеряющему силу тока. Когда по первой катушке шел электрический ток, ее магнитное поле возрастало. В это же время гальванометр, подключённый ко второй катушке, фиксировал возникновение в ней тока. Таким образом, Фарадей доказал, что в результате влияния магнитного поля, появляется ток. Такой ток стали называть индукционным. Но появлялся он только в момент подключения или отключения первой катушки от цепи. Если по первой катушке шел постоянный ток, то во второй в это время ничего не регистрировалось.

«Электрический магнетизм» проявлялся и в тот момент, когда Фарадей передвигал вторую катушку относительно первой. Сила индукционного тока увеличивалась, если движение катушки было быстрым, и наоборот.

Затем Фарадей заменил первую катушку на магнит, который вводил во вторую катушку. Явление электромагнитной индукции повторилось в точности как в опыте с двумя катушками.

Фарадей пришел к выводу, что возникновение индукционного тока зависит от количества линий магнитного поля, которые проходят сквозь контур.

Исследования электоролиза

Опыты Фарадея не ограничивались изучением магнитных полей. Большая часть современных представлений об электролизе и ионах обязана своим появлением этому английскому ученому. Обширную серию опытов по изучению поведения химических растворов в электрическом поле Фарадей свел к двум простым законам, которыми мы пользуемся и в настоящее время:

  • Масса вещества, образованная при электролизе на электродах, прямо пропорциональна произведению времени на ток (т. е. количеству электричества);
  • при одном и том же количестве электричества масса вещества, образованного на электродах, пропорциональна химическому эквиваленту данного вещества.

В ходе опытов Фарадей доказал, что для получения 1,008 кг водорода необходимо затратить 96500000 кулон электричества. Столько же электричества нужно для получения 35,4 кг хлора, 63,6/2 кг меди, 16/2 кг кислорода. Таким образом, мера электричества, необходимая для получения одного химического эквивалента вещества, была названа числом Фарадея.

Огромный вклад, который внес этот необыкновенный и талантливый ученый в физику, ставит его на один уровень с Ньютоном, Джоулем, Эйнштейном и другими великими людьми.

Клетка Фарадея

В 1836 году Майкл опубликовал работу, в которой доказал, что заряд электричества способен оказывать воздействие лишь на саму поверхность полностью замкнутой оболочки-проводника, не причиняя вреда всем, кто находится внутри нее. Ему удалось создать устройство, способное экранировать аппаратуру от электромагнитных излучений, названное клеткой Фарадея. Оно было выполнено из металла, имеющего высокую электропроводность, а сама конструкция заземлялась. Принцип действия устройства довольно прост – при внешнем воздействии электрического поля электроны металла начинают приводиться в движение, в результате чегозаряд противоположных сторон клетки полностью компенсирует влияние внешнего электрического поля.

Чтобы доказать наличие описанного эффекта сам Фарадей публично садился внутрь конструкции и после разрядов тока выходил оттуда живым и невредимым. Еще имя великого англичанина носит цилиндр, с помощью которого можно определить полноту электрического заряда и интенсивность пучка частиц.

В видео показан опыт с клеткой Фарадея (НИЯУ МИФИ).

Опыт с катушкой и магнитом

Взаимодействие движущегося магнита и катушки, намотанной из проводника, порождает электрический ток. Магнит при этом обязательно должен двигаться. Простое наличие неподвижного магнита вблизи катушки электрического тока не производит. Более того, при введении магнита в катушку в цепи возникает электрический ток одного направления (стрелка гальванометра отклоняется, например, вправо); при выведении магнита из катушки стрелка отклоняется в противоположную сторону. Таким образом, характер тока зависит от скорости и направления движения магнита, а также от того, каким полюсом он вставляется в катушку.

Возникающий при движении магнита внутри катушки или близ ее ток называется индукционным (самонаводящимся).

Наблюдения Фарадея за взаимодействием магнита и катушки с проводником заложили начала современной электротехники. На этом принципе работают современные электродвигатели постоянного тока (см. пример ниже).

Примеры решения задач

1. В однородном магнитном поле, индукция которого 1 Тл, имеется плоский проводящий виток, площадь которого равна 100 см2. Виток расположен перпендикулярно линиям магнитного потока. Сопротивление витка равно 200 мОм. Какой заряд протечет через поперечное сечение витка, если не станет поля?

При исчезновении магнитного поля изменится магнитный поток через виток:

ΔФ = ΔВS cos α;  ΔB = B,  α = 0°,  cos α = 1. Тогда ΔФ = BS.

После изменения магнитного потока в контуре появится ЭДС индукции:

2. Концы катушки из тысячи витков радиусом 5 см замкнуты накоротко. Сопротивление катушки 100 Ом. С какой скоростью должна изменяться индукция магнитного поля, перпендикулярного плоскости катушки, чтобы в ней выделялась тепловая мощность 100 мВт.

По закону электромагнитной индукции

3.  Провод длиной 2 м складывают пополам и замыкают концы. После этого провод растягивают в квадрат, плоскость которого перпендикулярна силовым линиям магнитного поля с индукцией 64 мкТл. Какое количество электронов пройдет при этом через поперечное сечение провода, если его сопротивление 10 мОм? Вначале площадь контура была равна 0. При растягивании провода в квадрат его площадь стала равна S = a2, где a = L/4. Когда изменится площадь, поменяется магнитный поток через контур ΔФ = B ΔS = BL2/16.

Физическая интерпретация

Линейно поляризованный свет, вращающийся в эффекте Фарадея, можно рассматривать как состоящий из суперпозиции луча с правой и левой круговой поляризацией (это принцип суперпозиции является фундаментальным во многих разделах физики). Мы можем посмотреть на эффекты каждого компонента (с правой или левой поляризацией) по отдельности и посмотреть, какое влияние это оказывает на результат.

В круговой поляризованный свет направление электрического поля вращается с частотой света либо по часовой стрелке, либо против часовой стрелки. В материале это электрическое поле вызывает силу на заряженные частицы, составляющие материал (из-за их малой массы электроны подвергаются наибольшему воздействию). Произведенное таким образом движение будет круговым, и заряды, движущиеся по кругу, будут создавать свое собственное (магнитное) поле в дополнение к внешнему магнитному полю. Таким образом, будет два разных случая: созданное поле будет параллельно внешнему полю для одной (круговой) поляризации и в противоположном направлении для другого направления поляризации — таким образом, чистое поле B увеличивается в одном направлении и уменьшается в противоположное направление. Это изменяет динамику взаимодействия для каждого луча, и один из лучей будет замедляться больше, чем другой, вызывая разность фаз между левым и правым поляризованными лучами. Когда два луча складываются после этого фазового сдвига, результатом снова становится линейно поляризованный луч, но с поворотом в направлении поляризации.

Направление вращения поляризации зависит от свойств материала, через который проходит свет. Полная обработка должна учитывать влияние внешних и индуцированных излучением полей на волновую функцию электронов, а затем рассчитывать влияние этого изменения на показатель преломления материала для каждой поляризации, чтобы увидеть, правая или левая круговая поляризация замедляются сильнее.

История

Фарадей держит кусок стекла того типа, который он использовал, чтобы продемонстрировать влияние магнетизма на поляризацию света, c. 1857 г.

К 1845 году он был известен благодаря работам Френель, Малус и другие, что различные материалы могут изменять направление поляризации света при правильной ориентации, что делает поляризованный свет очень мощным инструментом для исследования свойств прозрачных материалов. Фарадей твердо верил, что свет — это электромагнитное явление, и поэтому на него должны воздействовать электромагнитные силы. Он потратил значительные усилия на поиск свидетельств того, что электрические силы влияют на поляризацию света через то, что сейчас известно как электрооптические эффекты, начиная с разложения электролитов. Однако его экспериментальные методы были недостаточно чувствительны, и эффект был измерен только тридцать лет спустя. Джон Керр.

Затем Фарадей попытался найти влияние магнитных сил на свет, проходящий через различные вещества. После нескольких безуспешных попыток ему довелось испытать кусок «тяжелого» стекла, содержащий следы вести, которые он сделал во время своей более ранней работы по производству стекла. Фарадей заметил, что, когда луч поляризованного света проходит через стекло в направлении приложенной магнитной силы, поляризация света поворачивается на угол, пропорциональный силе силы. Позже он смог воспроизвести эффект в нескольких других твердых телах, жидкостях и газах, приобретя более сильные электромагниты.

Открытие хорошо задокументировано в ежедневной записной книжке Фарадея, которая с тех пор была опубликована. 13 сентября 1845 г. в абзаце № 7504, под рубрикой Тяжелое стекло, он написал:

Он резюмировал результаты своих экспериментов 30 сентября 1845 года в абзаце №7718, написав знаменитое:

Для дальнейшего

  • Исследование оптических свойств прозрачных тел под действием магнетизма , Эмиль Верде, Малле-Башелье, 1854 г.
  • Оптика , Юджин Хехт, Аддисон Уэсли, 4-е издание 2002 г., твердый переплет, ( ISBN  0-8053-8566-5 ) , глава 8.11.2
  • Оптика Амнон Ярив, издательство Oxford University Press; 5-е издание (апрель 1997 г.), твердый переплет, ( ISBN  0-19-510626-1 ) , Оптическая электроника в современных коммуникациях (Oxford Series in Electrical and Computer Engineering)
  • Влияние распространения радиоволн на спутниковые системы на частотах ниже 10 ГГц — Руководство для разработчиков спутниковых систем , Уоррен Л. Справочная публикация НАСА 1108 (02) 1987. С 2-12 по 2-28.

Майкл Фарадей – основоположник закона индукции

Ученый занимавшиеся изучением электричества – великий английский физик и химик Майкл Фарадей (1791-1867). Его заслуга в изучении взаимной магнитной индукции между двумя связанными контурами как основа при производстве электричества огромна.

Будучи сыном кузнеца, он был самоучкой, благодаря книгам по химии и электричеству, которые он читал во время своего ученичества в переплетной мастерской—работу, которую он начал в возрасте 14 лет. Когда он был еще подростком, у него была возможность посещать лекции великого химика Хамфри Дэви в Королевском институте. В возрасте 21 года Дэви нанял его помощником в Королевский институт, где Фарадей оставался в течение следующих 50 лет, будучи назначен заведующим его лабораторией в 1821 году. Хотя отсутствие формального образования оставляло ему математические пробелы, они были в значительной степени компенсированы поразительной экспериментальной интуицией, которая позволила ему стать одним из самых влиятельных экспериментальных исследователей всех времен.

В 1821 году Фарадей начал исследовать взаимодействие между магнитами и токами. Он разработал концепцию силовой линии (термин, который он ввел) для обоснования фигур, образованных железными опилками вблизи магнита. Используя эту концепцию, в августе 1831 года он открыл взаимную магнитную индукцию, отметив переходный ток, индуцируемый в катушке, когда ток включался и выключался во второй катушке. Обе катушки были намотаны на один и тот же тороидальный железный сердечник.

В октябре 1831 года Фарадей наблюдал самоиндукцию, возникающую в результате тока, индуцируемого в соленоидальной катушке движением магнита внутри ее отверстия.

Фарадей ввел термин электродвижущая сила для такого эффекта, и мы все еще видим это в использовании сегодня.

В 1831 году Фарадей также создал представление электромеханического генератора. Он ввел понятие диэлектрической проницаемости и построил первый переменный конденсатор в 1837 году. Он также изучал оптику и поляризацию света вместе со своим другом Чарльзом Уитстоуном, открыв в 1845 году эффект Фарадея (вращение поляризованного света при прохождении через намагниченную область).

Между 1846 и 1855 годами Фарадей признал магнитные свойства материи и ввел понятие диамагнетизма. Развивая идею силовых линий, он ввел понятия электрического и магнитного полей.

Не менее важными были открытия Фарадея в области химии, где он написал несколько прорывных работ. Он собрал свою колоссальную научную продукцию главным образом в экспериментальных исследованиях, опубликованных в нескольких номерах между 1839 и 1855 годами. Он выступал с памятными лекциями в Королевском институте, был назначен членом Королевского общества в 1824 году и дважды получил медаль Копли, в 1832 и 1838 годах, но отказался от дворянского титула и президентства Королевского института (1864) и не хотел регистрировать никаких патентов.

Применение электромагнетизма Фарадея в технике

Электромагнетизм Фарадея имеет широкое применение в различных областях техники и технологии. Вот некоторые из них:

Генераторы электричества

Принцип электромагнитной индукции Фарадея используется в генераторах электричества. Генераторы преобразуют механическую энергию в электрическую, используя вращающуюся катушку и магнитное поле. При вращении катушки изменяется магнитное поле, что вызывает электромагнитную индукцию и генерацию электрического тока.

Трансформаторы

Трансформаторы основаны на принципе электромагнитной индукции Фарадея. Они используются для изменения напряжения в электрических цепях. Трансформатор состоит из двух катушек, обмотанных на одном железном сердечнике. При изменении тока в одной катушке возникает изменение магнитного поля, которое индуцирует ток во второй катушке с другим напряжением.

Электромагниты

Электромагниты – это устройства, которые создают магнитное поле при прохождении электрического тока через проводник. Они широко используются в различных устройствах, таких как электромагнитные замки, электромагнитные клапаны, электромагнитные реле и т.д. Принцип работы электромагнитов основан на электромагнитной индукции Фарадея.

Электромагнитные волны

Электромагнитная индукция Фарадея также связана с распространением электромагнитных волн. Электромагнитные волны, такие как радиоволны, микроволны, инфракрасные и видимые световые волны, создаются при изменении электрического и магнитного поля. Эти волны имеют широкое применение в радиосвязи, телекоммуникациях, радарах, оптике и других областях.

Таким образом, электромагнетизм Фарадея играет важную роль в различных технических устройствах и технологиях, обеспечивая генерацию электричества, изменение напряжения, создание магнитных полей и распространение электромагнитных волн.

Магнитный поток

Магнитным потоком через площадь ​\( S \)​ контура называют скалярную физическую величину, равную произведению модуля вектора магнитной индукции ​\( B \)​, площади поверхности ​\( S \)​, пронизываемой данным потоком, и косинуса угла ​\( \alpha \)​ между направлением вектора магнитной индукции и вектора нормали (перпендикуляра к плоскости данной поверхности):

Обозначение – ​\( \Phi \)​, единица измерения в СИ – вебер (Вб).

Магнитный поток в 1 вебер создается однородным магнитным полем с индукцией 1 Тл через поверхность площадью 1 м2, расположенную перпендикулярно вектору магнитной индукции:

Магнитный поток можно наглядно представить как величину, пропорциональную числу магнитных линий, проходящих через данную площадь.

В зависимости от угла ​\( \alpha \)​ магнитный поток может быть положительным (\( \alpha \) < 90°) или отрицательным (\( \alpha \) > 90°). Если \( \alpha \) = 90°, то магнитный поток равен 0.

Изменить магнитный поток можно меняя площадь контура, модуль индукции поля или расположение контура в магнитном поле (поворачивая его).

В случае неоднородного магнитного поля и неплоского контура магнитный поток находят как сумму магнитных потоков, пронизывающих площадь каждого из участков, на которые можно разбить данную поверхность.

История

Данный эффект был обнаружен М. Фарадеем в 1845 году .

Первоначальное объяснение эффекта Фарадея дал Д. Максвелл в своей работе «Избранные сочинения по теории электромагнитного поля», где он рассматривает вращательную природу магнетизма . Опираясь в том числе на работы профессора У. Томсона , который подчеркивал, что причиной магнитного действия на свет должно быть реальное(а не воображаемое) вращение в магнитном поле, Максвелл рассматривает намагниченную среду как совокупность «молекулярных магнитных вихрей». Теория, считающая электрические токи линейными, а магнитные силы вращательными явлениями, согласуется в этом смысле с теориями Ампера и Вебера. Исследование, проведенное Д. К. Максвеллом приводит к заключению, что единственное действие, которое вращение вихрей оказывает на свет, состоит в том, что плоскость поляризации начинает вращаться в том же направлении, что и вихри, на угол, пропорциональный:

  • толщине вещества
  • составляющей магнитной силы параллельной лучу
  • показателю преломления луча
  • обратно пропорциональный квадрату длины волны в воздухе
  • среднему радиусу магнитных вихрей
  • емкости магнитной индукции (магнитной проницаемости)

Все положения «теории молекулярных вихрей» Д. Максвелл доказывает математически строго, подразумевая, что все явления природы в глубинной сути своей аналогичны, и действуют похожим образом.

Многие положения данной работы были впоследствии забыты или не поняты (например, Герцем), однако известные на сегодняшний день уравнения для электромагнитного поля выведены были Д. Максвеллом из логических посылок указанной теории.

Австрийский физик-теоретик Л. Больцман в примечаниях к работе Д. Максвелла отзывался следующим образом:

От бедности к науке

Майкл Фарадей появился на свет 22 сентября 1791 года в рабочей семье. Его отец и старший брат занимались кузнечным делом. Они жили очень скромно в одном из бедных кварталов британской столицы. Хроническая нищета не позволила мальчику получить полноценного образования и с 13 лет вместо занятий в школе он работает разносчиком газет, а затем устраивается в книжную лавку. Тяжелая жизнь только усилила его тягу к знаниям, и юный Майкл с упоением читал любую книгу, которая попадалась ему под руки.

Особое удовлетворение он испытывал от знакомства с научной литературой, прежде всего по физике и химии, а также статьями об электричестве. Работа переплетчиком книг позволила познакомиться с различными опытами, которые пытливый юноша с завидной регулярностью пытался повторить у себя дома. В результате за 7 лет работы в лавке Фарадей научился больше, чем многие сверстники в стенах учебных заведений. Используя свой небольшой заработок, молодой человек приобретал химические препараты, с которыми проводил различные опыты. Семья разделяла увлечения Майкла и старший брат платил по 1 шиллингу за посещение им лекций в философском обществе.

Математическая формулировка

Формально магнитный проницаемость рассматривается как недиагональный тензор, выражаемый уравнением:

B(ω)=|μ1−яμ2яμ2μ1μz|ЧАС(ω){ displaystyle mathbf {B} ( omega) = { begin {vmatrix} mu _ {1} & — i mu _ {2} & 0 i mu _ {2} & mu _ {1 } & 0 0 & 0 & mu _ {z} end {vmatrix}} mathbf {H} ( omega)}

Связь между угол поворота поляризации и магнитного поля в прозрачном материале составляет:

Вращение поляризации из-за эффекта Фарадея

β=VBd{ Displaystyle бета = { mathcal {V}} Bd}

куда

β — угол поворота (в радианы )
B — плотность магнитного потока в направлении распространения (в теслас )
d длина пути (в метрах), где свет и магнитное поле взаимодействуют
V{ Displaystyle scriptstyle { mathcal {V}}} это Постоянная Верде для материала. Эта эмпирическая константа пропорциональности (в радианах на тесла на метр) зависит от длины волны и температуры. и сведен в таблицу для различных материалов.

Положительная постоянная Верде соответствует L-вращению (против часовой стрелки), когда направление распространения параллельно магнитному полю, и R-вращению (по часовой стрелке), когда направление распространения антипараллельно. Таким образом, если луч света проходит через материал и отражается обратно через него, вращение удваивается.

Понравилась статья? Поделиться с друзьями:
Умный ребенок
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: