Электрическое сопротивление

Общие сведения

Электрическое сопротивление проводника зависит не только от его геометрических параметров и вещества, а также от температуры. Чтобы выяснить и доказать это, нужно изучить теорию. Электропроводимость — способность проводника пропускать электрический ток.

Следует отметить, что каждое вещество состоит из атомов, образующий узлы кристаллической решетки. Под действием электромагнитного поля происходит упорядоченное движение заряженных частиц (электротока). Последние ударяются об узлы этой решетки, т. е. взаимодействуют с ними. В результате происходит выделение тепловой энергии. После этого они снова «разгоняются» электромагнитным полем до следующего взаимодействия.

Этот процесс и получил название электрического сопротивления. Последнее зависит от нескольких факторов:

  1. Геометрических особенностей проводника.
  2. Количества свободных электронов.
  3. Типа материала.

Первый из них — удельное сопротивление (обозначается буквой «р»). Он является параметром, который зависит от типа вещества, а также и от температуры. Для его расчета применяется специальное соотношение, имеющее такой вид: p=p0+aT, где р0 — табличное значение удельного сопротивления, а — константа (для металла равна единице, раствора — «0,5» и других компонентов — «0,25») и T — температура проводника в Цельсиях.

Вторая величина «L» — длина проводника, а третья «S» — величина площади поперечного сечения. Параметр зависит от геометрической формы проводника. Например, если жила имеет форму цилиндра, то значит, необходимо рассчитывать величину по следующей формуле: S= Pi*R 2 , где Pi — постоянная, равная 3,1415, а R — радиус. Кроме того, соотношение возможно записать в другом формате: S= Pi (d 2 /4), где D — диаметр проводника. Последний рекомендуется измерять при помощи штангенциркуля.

Если проводник имеет форму прямоугольника или квадрата, то площадь сечения находится по формуле «S=mn», где m и n — стороны фигуры.

Удельное сопротивление

Как узнать сопротивление материала, если по нему не течет ток и у нас нет омметра? Для это существует специальная величина —удельное электрическое сопротивление материалов

(это табличные значения, которые определены опытным путем для большинства металлов). С помощью этого значения и физических величин материала, мы можем вычислить сопротивление по формуле:

  • Производство судебной экспертизы упк кратко

      

  • Назовите источники информации в астрономии кратко

      

  • Итоги второй мировой войны послевоенное урегулирование кратко

      

  • Борьба афин и спарты за гегемонию в греции кратко

      

  • Коммуникативная культура личности кратко

Зависимость тока в проводнике от напряжения на его концах. Электрическое сопротивление проводника

Проведём эксперимент, для этого соединим источник тока с проводником (резистором), к которому последовательно подключим амперметр (для измерения силы тока на резисторе), а параллельно – вольтметр (для измерения напряжения на резисторе) (см. рис. 1). Первоначально, при напряжении 1 В, сила тока равна 1 А. При увеличении напряжения в 2 раза, до 2 В, сила тока увеличилась также в 2 раза (2 А) (см. рис. 2).

Рис. 1. Электрическая схема для эксперимента

Из опыта видно, что при увеличении или уменьшении напряжения на концах проводника во столько же раз увеличится или уменьшится сила тока в проводнике. Такую зависимость впервые экспериментально получил немецкий учёный Георг Ом в 1826 году. Из курса математики известно, что её можно записать в таком виде:

,

где I – сила тока; U – напряжение; k – коэффициент пропорциональности.

Представим зависимость в виде графика (см. рис. 3). Такой график зависимости силы тока в проводнике от напряжения на его концах называют вольтамперной характеристикой (также может быть представлена в виде таблицы).

Рис. 2. Показания амперметра при изменении напряжения

Рис. 3. Вольтамперная характеристика проводника

Для следующего эксперимента соберём электрическую схему аналогично предыдущему, заменив в ней проводник (см. рис. 4).  Первоначально, при напряжении около 1,5 В, сила тока равна примерно 0,3 А. При увеличении напряжения до 3 В, сила тока увеличится примерно до 0,6 А (см. рис. 5).

Рис. 4. Электрическая схема для эксперимента Рис. 5. Показания амперметра при изменении напряжения

Проведя опыты с различными проводниками, установили, что сила тока в проводнике всегда пропорциональна напряжению на его концах, при этом коэффициент пропорциональности зависит от проводника. Таким образом, сила тока в проводнике зависит не только от напряжения на его концах, но и от свойства проводника. То есть зависимость  можно записать так:

 или ,

где R – электрическое сопротивление проводника.

Величина  – проводимость. Единица измерения проводимости называется сименсом (См), названная в честь немецкого физика Эрнеста Сименса. 1 См – электрическая проводимость проводника с сопротивлением 1 Ом.

При одинаковом напряжении на концах проводников, сила тока меньше в том проводнике, который обладает большим сопротивлением. То есть чем больше сопротивление проводника, тем сильнее проводник противодействует прохождению тока. При этом часть электрической энергии превращается во внутреннюю энергию проводника.

Электрическое сопротивление – это физическая величина, характеризующая свойство проводника противодействовать электрическому току. Единица сопротивления в СИ – Ом.

1 Ом – это сопротивление проводника, в котором при напряжении на концах 1 В сила тока равна 1 А.

Удельное электрическое сопротивление

Дальнейшие исследования позволили установить связь величины электрического сопротивления с его основными геометрическими размерами. Оказалось, что сопротивление проводника прямо пропорционально длине проводника L и обратно пропорционально площади поперечного сечения проводника S.

Эта функциональная связь хорошо описывается следующей формулой:

$ R = ρ *{ L\over S} $ (4)

Постоянная для каждого вещества величина ρ была названа удельным сопротивлением. Значение этого параметра зависит от плотности вещества, его кристаллической структуры, строения атомов и прочих внутренних характеристик вещества. Из формулы (4) можно получить формулу для расчета удельного сопротивления, если имеются экспериментальные значения для R, L и S:

$ ρ = R*{ S\over L } $ (5)

Для большинства известных веществ измерения были произведены и внесены в справочные таблицы электрических сопротивлений проводников.

Удельное сопротивление металлов, Ом*мм2/м

(при Т = 20С)

Серебро

0,016

Бронза (сплав)

0,1

Медь

0,017

Олово

0,12

Золото

0,024

Сталь (сплав)

0,12

Алюминий

0,028

Свинец

0,21

Иридий

0,047

Никелин (сплав)

0,42

Молибден

0,054

Манганин (сплав)

0,45

Вольфрам

0,055

Константан (сплав)

0,48

Цинк

0,06

Титан

0,58

Латунь (сплав)

0,071

Ртуть

0,958

Никель

0,087

Нихром (сплав)

1,1

Платина

0,1

Висмут

1,2

Экспериментально было обнаружено, что с понижением температуры сопротивление металлов уменьшается. При приближении к температуре абсолютного нуля, которая равна -273С, сопротивление некоторых металлов стремится к нулю. Это явление называется сверхпроводимостью. Атомы и молекулы как бы “замораживаются”, прекращают любое движение и не оказывают сопротивления потоку электронов.

Что мы узнали?

Итак, мы узнали, что способность проводника ограничивать величину электрического тока называется сопротивлением. Величину сопротивления проводника можно определить с помощью закона Ома, измерив напряжение и ток. Если известно удельное сопротивление проводника, его длина и поперечное сечение, то сопротивление можно вычислить с помощью формулы (4), не измеряя ток и напряжение.

  1. /10

    Вопрос 1 из 10

Напряжение

Чтобы заставить перемещаться заряженные частицы от одного полюса к другому необходимо создать между полюсами разность потенциалов
или – Напряжение
. Единица измерения напряжения – Вольт
(В
или V
). В формулах и расчетах напряжение обозначается буквой V

. Чтобы получить напряжение величиной 1 В нужно передать между полюсами заряд в 1 Кл, совершив при этом работу в 1 Дж (Джоуль).

Для наглядности представим резервуар с водой расположенный на некоторой высоте. Из резервуара выходит труба. Вода под естественным давлением покидает резервуар через трубу. Давайте условимся, что вода – это электрический заряд
, высота водяного столба (давление) – это напряжение
, а скорость потока воды – это электрический ток
.

Таким образом, чем больше воды в баке, тем выше давление. Аналогично с электрической точки зрения, чем больше заряд, тем выше напряжение.

Начнем сливать воду, давление при этом будет уменьшаться. Т.е. уровень заряда опускается – величина напряжения уменьшается. Такое явление можно наблюдать в фонарике, лампочка светит все тусклее по мере того как разряжаются батарейки

Обратите внимание, чем меньше давление воды (напряжение), тем меньше поток воды (ток)

Зависимость удельного сопротивления от деформаций

При холодной обработке проводников происходит пластическая деформация сырья с последующим искажением кристаллической решетки, что значительно увеличивает уровень удельного сопротивления.

Электрическое сопротивление – это свойство любого вещества препятствовать движению ионов. Характеристика является динамической и зависит от нескольких факторов. Изоляция и некоторые материалы обладают уровнем сопротивления, при котором электрический ток не способен проходить сквозь вещество. Это может характеризовать некоторые вещества, как плохо проводящие ток из-за малого объема ионов. Что такое сопротивление проводника? Величина, из-за которой происходит потеря мощности при прохождении электричества.

Основные понятия закона Ома

Как понять закон Ома? Нужно просто разобраться в том, что есть что в его определении. И начать следует с определения силы тока, напряжения и сопротивления.

Сила тока I

Пусть в каком-то проводнике течет ток. То есть, происходит направленное движение заряженных частиц – допустим, это электроны. Каждый электрон обладает элементарным электрическим зарядом (e= -1,60217662 × 10-19 Кулона). В таком случае через некоторую поверхность за определенный промежуток времени пройдет конкретный электрический заряд, равный сумме всех зарядов протекших электронов.

Отношение заряда к времени и называется силой тока. Чем больший заряд проходит через проводник за определенное время, тем больше сила тока. Сила тока измеряется в Амперах.

Напряжение U, или разность потенциалов

Это как раз та штука, которая заставляет электроны двигаться. Электрический потенциал характеризует способность поля совершать работу по переносу заряда из одной точки в другую. Так, между двумя точками проводника существует разность потенциалов, и электрическое поле совершает работу по переносу заряда.

Физическая величина, равная работе эффективного электрического поля при переносе электрического заряда, и называется напряжением. Измеряется в Вольтах. Один Вольт – это напряжение, которое при перемещении заряда в 1 Кл совершает работу, равную 1 Джоуль.

Сопротивление R

Ток, как известно, течет в проводнике. Пусть это будет какой-нибудь провод. Двигаясь по проводу под действием поля, электроны сталкиваются с атомами провода, проводник греется, атомы в кристаллической решетке начинают колебаться, создавая электронам еще больше проблем для передвижения. Именно это явление и называется сопротивлением. Оно зависит от температуры, материала, сечения проводника и измеряется в Омах.

Памятник Георгу Симону Ому

Сопротивление и проводимость: взаимосвязь и важность для электротехники

В электротехнике сопротивление и проводимость являются важными понятиями, которые взаимосвязаны и имеют существенное значение. Рассмотрим их более подробно.

Сопротивление — это физическая величина, которая характеризует способность материала сопротивляться току электрического заряда. Оно обозначается буквой R и измеряется в омах (Ω). Чем выше сопротивление, тем меньше ток протекает через материал.

Проводимость, напротив, характеризует способность материала проводить ток. Она обозначается буквой G и измеряется в сименсах (S). Чем выше проводимость, тем легче ток протекает через материал.

Между сопротивлением и проводимостью существует обратная зависимость: чем выше сопротивление, тем ниже проводимость, и наоборот. Это связано с тем, что сопротивление по сути является мерой сопротивления течению тока, а проводимость — мерой способности проводить ток.

В электротехнике сопротивление и проводимость играют решающую роль. Зная эти величины, можно рассчитать мощность, напряжение и ток в электрической цепи. Кроме того, сопротивление и проводимость влияют на эффективность и надежность работы электронных устройств. Например, сопротивление проводников в электрической сети может привести к перегреву и обрыву цепи, а проводимость материалов в полупроводниковых элементах определяет их электронные свойства и возможности для использования в различных электронных устройствах.

В заключение, сопротивление и проводимость взаимосвязаны и играют критическую роль в электротехнике. Они позволяют анализировать и расчетовывать различные электрические цепи и устройства, а также влияют на их работу и надежность.

Электрический ток

Электрический ток – это физический процесс направленного движения заряженных частиц под действием электромагнитного поля от одного полюса замкнутой электрической цепи к другому. В качестве частиц, переносящих заряд, могут выступать электроны, протоны, ионы и дырки. При отсутствии замкнутой цепи ток невозможен. Частицы способные переносить электрические заряды существуют не во всех веществах, те в которых они есть, называются проводниками и полупроводниками. А вещества, в которых таких частиц нет – диэлектриками.

Принято считать направление тока от плюса к минусу, при этом электроны движутся от минуса к плюсу!

Единица измерения силы тока – Ампер (А). В формулах и расчетах сила тока обозначается буквой I. Ток в 1 Ампер образуется при прохождении через точку электрической цепи заряда в 1 Кулон (6,241·1018 электронов) за 1 секунду.

Вновь обратимся к нашей аналогии вода – электричество. Только теперь возьмем два резервуара и наполним их равным количеством воды. Отличие между баками в диаметре выходной трубы.

Откроем краны и убедимся, что поток воды из левого бака больше (диаметр трубы больше), чем из правого. Такой опыт – явное доказательство зависимости скорости потока от диаметра трубы. Теперь попробуем уравнять два потока. Для этого добавим в правый бак воды (заряд). Это даст большее давление (напряжение) и увеличит скорость потока (ток). В электрической цепи в роли диаметра трубы выступает сопротивление.

Проведенные эксперименты наглядно демонстрируют взаимосвязь между напряжением, током и сопротивлением. Подробнее о сопротивлении поговорим чуть позже, а сейчас еще несколько слов о свойствах электрического тока.

Если напряжение не меняет свою полярность, плюс на минус, и ток течет в одном направлении, то – это постоянный ток и соответственно постоянное напряжение. Если источник напряжения меняет свою полярность и ток течет то в одном направлении, то в другом – это уже переменный ток и переменное напряжение. Максимальные и минимальные значения (на графике обозначены как Io) – это амплитудные или пиковые значения силы тока. В домашних розетках напряжение меняет свою полярность 50 раз в секунду, т.е. ток колеблется то туда, то сюда, получается, что частота этих колебаний составляет 50 Герц или сокращенно 50 Гц. В некоторых странах, например в США принята частота 60 Гц.

Почему проводник обладает сопротивлением

Электроны, которые располагаются на последней орбите атома, слабо удерживаются ядром и покидают свой атом. Становятся свободными и перемещаются в пространстве кристаллической решётки. При создании электрического поля не все электроны могут проходить через сечение проводника. Что приводит к значительному уменьшению силы тока, а значит к значительному увеличению сопротивления.

Можно выделить три причины:

1. Два электрона, пролетая рядом, отталкиваются друг от друга и через сечение не пройдут.

2. Ион может захватить электрон и через сечение не пройдут.

3. Ион приостанавливает электрон и через сечение их пройдет меньше.

Параллельное и последовательное соединение

В электрике элементы соединяются либо последовательно — один за другим, либо параллельно — это когда к одной точке подключены несколько входов, к другой — выходы от тех же элементов.

Закон Ома для параллельного и последовательного соединения

Последовательное соединение

Как работает закон Ома для этих случаев? При последовательном соединении сила тока, протекающая через цепочку элементов, будет одинаковой. Напряжение участка цепи с последовательно подключенными элементами считается как сумма напряжений на каждом участке. Как можно это объяснить? Протекание тока через элемент — это перенос части заряда с одной его части в другую. То есть, это определенная работа. Величина этой работы и есть напряжение. Это физический смысл напряжения. Если с этим понятно, двигаемся дальше.

Последовательное соединение и параметры этого участка цепи

При последовательном соединении приходится переносить заряд по очереди через каждый элемент. И на каждом элементе это определенный «объем» работы. А чтобы найти объем работы на всем участке цепи, надо работу на каждом элементе сложить. Вот и получается, что общее напряжение — это сумма напряжений на каждом из элементов.

Точно так же — при помощи сложения — находится и общее сопротивление участка цепи. Как можно это себе представить? Ток, протекая по цепочке элементов, последовательно преодолевает все сопротивления. Одно за другим. То есть чтобы найти сопротивление, которое он преодолел, надо сопротивления сложить. Примерно так. Математический вывод более сложен, а так понять механизм действия этого закона проще.

Параллельное соединение

Параллельное соединение — это когда начала проводников/элементов сходятся в одной точке, а в другой — соединены их концы. Постараемся объяснить законы, которые справедливы для соединений этого типа. Начнем с тока. Ток какой-то величины подается в точку соединения элементов. Он разделяется, протекая по всем проводникам. Отсюда делаем вывод, что общий ток на участке равен сумме тока на каждом из элементов: I = I1 + I2 + I3.

Теперь относительно напряжения. Если напряжение — это работа по перемещению заряда, тоо работа, которая необходима на перемещение одного заряда будет одинакова на любом элементе. То есть, напряжение на каждом параллельно подключенном элементе будет одинаковым. U = U1=U2=U3. Не так весело и наглядно, как в случае с объяснением закона Ома для участка цепи, но понять можно.

Законы для параллельного соединения

Для сопротивления все несколько сложнее. Давайте введем понятие проводимости. Это характеристика, которая показывает насколько легко или сложно заряду проходить по этому проводнику. Понятно, что чем меньше сопротивление, тем проще току будет проходить. Поэтому проводимость — G — вычисляется как величина обратная сопротивлению. В формуле это выглядит так: G = 1/R.

Для чего мы говорили о проводимости? Потому что общая проводимость участка с параллельным соединением элементов равна сумме проводимости для каждого из участков. G = G1 + G2 + G3 — понять несложно. Насколько легко току будет преодолеть этот узел из параллельных элементов, зависит от проводимости каждого из элементов. Вот и получается, что их надо складывать.

Теперь можем перейти к сопротивлению. Так как проводимость — обратная к сопротивлению величина, можем получить следующую формулу: 1/R = 1/R1 + 1/R2 + 1/R3.

Что нам дает параллельное и последовательное соединение?

Теоретические знания — это хорошо, но как их применить на практике? Параллельно и последовательно могут соединяться элементы любого типа. Но мы рассматривали только простейшие формулы, описывающие линейные элементы. Линейные элементы — это сопротивления, которые еще называют «резисторы». Итак, вот как можно использовать полученные знания:

Если в наличии нет резистора большого номинала, но есть несколько более «мелких», нужное сопротивление можно получить соединив последовательно несколько резисторов. Как видите, это полезный прием.
Для продления срока жизни батареек, их можно соединять параллельно. Напряжение при этом, согласно закону Ома, останется прежним (можно убедиться, измерив напряжение мультиметром). А «срок жизни» сдвоенного элемента питания будет значительно больше, нежели у двух элементов, которые сменят друг друга

Только обратите внимание: параллельно соединять можно только источники питания с одинаковым потенциалом. То есть, севшую и новую батарейки соединять нельзя

Если все-таки соединить, та батарейка которая имеет больший заряд, будет стремиться зарядить менее заряженную. В результате общий их заряд упадет до низкого значения.

В общем, это наиболее распространенные варианты использования этих соединений.

Сопротивление и проводимость: взаимосвязь и значения

Сопротивление и проводимость – два понятия, используемых в физике для описания электрических свойств вещества. Они тесно связаны друг с другом и играют важную роль при изучении электронных систем.

Сопротивление – это физическая характеристика вещества, которая описывает его способность препятствовать прохождению электрического тока. Сопротивление измеряется в омах (Ω). Чем выше значение сопротивления, тем сложнее для электрического тока пройти через вещество. Сопротивление обусловлено внутренними свойствами вещества, такими как размеры, форма, температура и состав.

Проводимость – это обратная величина сопротивлению и описывает способность вещества пропускать электрический ток. Проводимость обозначается символом σ (сигма) и измеряется в ом-1 м-1. Чем выше проводимость, тем легче для электрического тока пройти через вещество. Высокую проводимость обладают металлы и некоторые другие вещества, такие как соли или графен. Низкую или отсутствующую проводимость имеют диэлектрики или изоляторы.

Значения сопротивления и проводимости взаимосвязаны формулой:

R = 1/σ

Таким образом, для вещества с высокой проводимостью, сопротивление будет низким, а для вещества с низкой проводимостью – высоким. Это означает, что материалы с хорошей проводимостью обладают малым сопротивлением электрическому току, а материалы с плохой проводимостью имеют большое сопротивление.

Знание о взаимосвязи между сопротивлением и проводимостью позволяет инженерам и ученым оптимизировать работу электронных устройств и материалов. Например, для создания проводников с минимальными потерями энергии необходимо выбрать материал с низким сопротивлением и высокой проводимостью.

Удельное сопротивление

Физический смысл удельного сопротивления в таблице имеет такую формулировку: величина «р» эквивалентна отношению сопротивления проводника из заданного материала в 1 Ом площадью поперечного сечения 1 мм 2 к длине 1 м. Математическая форма записи: p=/1м.

На основании общего соотношения можно вывести формулу удельного сопротивления: p=(RS)/L. Однако к этому физики пришли не сразу. После открытия закона Ома для полной цепи и ее участка применялись только три составляющих, а именно: сила тока, напряжение и сопротивление.

На протяжении определенного времени физики не могли понять различные измерения параметров (отклонения) в электрических схемах при постоянном напряжении и токе, которые фиксировались приборами. Оказалось, что причиной стала температура окружающей среды. Для обыкновенных металлов (золота, стали и никелина) величина сопротивления при высоком температурном коэффициенте увеличивалась, а при низком — уменьшалась.

Опытным путем был открыт новый параметр, зависящий не только от типа материала, но и от температуры. Его назвали удельным сопротивлением.

Проведение опыта

Опыт позволяет определить зависимость сопротивления от температуры. Для этого подойдет проволока из любого проводника (рекомендуется использовать никелин). Кроме того, понадобится источник питания, напряжение которого составляет примерно от 12 до 24 В постоянного тока. Далее необходимо собрать схему, дополнив ее лампой накаливания и выключателем. Элементы необходимо соединить последовательно.

После сборки схемы выключатель должен быть в положении «отключено». Если его включить, то лампочка будет гореть сначала ярко. Однако это будет длиться недолго — до нагрева спирали. Специалисты рекомендуют следить за техникой безопасности. Схему необходимо собирать, используя негорючие монтажные элементы.

Температурный коэффициент

Формула, связывающая сопротивление и температурный коэффициент выглядит таким образом: (R-R0)/R=at. Она состоит из следующий параметров:

  1. R0 — величины среднего значения сопротивления (при температуре по Цельсию 0 градусов).
  2. а — температурного коэффициента.
  3. t — температуры проводника.

Чтобы рассчитать температурный коэффициент, нужно найти опытным путем величину электросопротивления при нулевом значении температуры. Она измеряется при помощи прибора, который называется омметром. Далее требуется посчитать p через формулу «p=p0+aT».

Нахождение неизвестной величины р0 осуществляется по специальным таблицам, в которых ученые уже позаботились и измерили опытным путем параметр при температуре 20 градусов по Цельсию.

Таким образом, расчет сопротивления проводника производится не только по его геометрическим параметрам и веществу, из какого он состоит, а также по величине температуры.

Понравилась статья? Поделиться с друзьями:
Умный ребенок
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: