Как легко преобразовать F в C?
Точная формула по Фаренгейту в Цельсию
- Начните с температуры в градусах Фаренгейта (например, 100 градусов).
- Вычтите 32 из этого числа (например, 100 — 32 = 68).
- Разделите свой ответ на 1.8 (например, 68 / 1.8 = 37.78).
Как перевести Фаренгейты в Цельсии? F° в C°: формула преобразования Фаренгейта в Цельсия
Чтобы преобразовать температуру из градусов Фаренгейта в Цельсия, вычтите 32 и умножьте на. 5556 (или 5/9).
Как рассчитать Цельсий?
Если вы хотите перевести градусы Фаренгейта в градусы Цельсия, сделайте наоборот: отнимите 30 от температуры в градусах по Фаренгейту, а затем разделить на 2 чтобы получить температуру в градусах Цельсия.
Цельсий горячий или холодный? Градусы Цельсия
Цельсий (° C) — еще одна мера температуры. Цельсия используется в большинстве стран мира — кроме США! В градусах Цельсия, 0 ° очень холодно! 40 ° очень жарко!
§ 3.7. Абсолютная температура
Не все в мире относительно. Так, существует абсолютный нуль температуры. Есть и абсолютная шкала температур. Сейчас вы узнаете об этом.
При увеличении температуры объем газа неограниченно возрастает. Не существует никакого предела для роста температуры(1). Напротив, низкие температуры имеют предел.
Согласно закону Гей-Люссака (3.6.4), при понижении температуры объем стремится к нулю. Так как объем не может быть отрицательным, то температура не может быть меньше определенного значения (отрицательного по шкале Цельсия).
Абсолютный нуль температуры
Предельную температуру, при которой объем идеального газа становится равным нулю, принимают за абсолютный нуль температуры. Однако объем реальных газов при абсолютном нуле температуры обращаться в нуль не может. Имеет ли смысл тогда это предельное значение температуры?
Предельная температура, существование которой вытекает из закона Гей-Люссака, имеет смысл, так как практически можно приблизить свойства реального газа к свойствам идеального. Для этого надо брать все более разреженный газ, так чтобы его плотность стремилась к нулю. У такого газа действительно объем с понижением температуры будет стремиться к предельному, близкому к нулю.
Найдем значение абсолютного нуля по шкале Цельсия. Приравнивая объем Vb формуле (3.6.4) нулю и учитывая, что
получим
Отсюда абсолютный нуль температуры равен
t = -273°C(2).
Это предельная, самая низкая температура в природе, та «наибольшая или последняя степень холода», существование которой предсказал Ломоносов.
Шкала Кельвина
Английский ученый У. Кельвин ввел абсолютную шкалу температур. Нулевая температура по шкале Кельвина соответствует абсолютному нулю, и единица температуры по этой шкале равна градусу по шкале Цельсия, поэтому абсолютная температура Т связана с температурой по шкале Цельсия формулой
На рисунке 3.11 для сравнения изображены абсолютная шкала и шкала Цельсия.
Рис. 3.11
Единица абсолютной температуры в СИ называется Кельвином (сокращенно К). Следовательно, один градус по шкале Цельсия равен одному градусу по шкале Кельвина: 1 °С = 1 К.
Кельвин Уильям (Томсон У.) (1824— 1907) — выдающийся английский физик, один из основателей термодинамики и молекулярно-кинетической теории газов.
Кельвин ввел абсолютную шкалу температур и дал одну из формулировок второго начала термодинамики в форме невозможности полного превращения теплоты в работу. Он произвел расчет размеров молекул на основе измерения поверхностной энергии жидкости. В связи с прокладкой трансатлантического телеграфного кабеля Кельвин разработал теорию электромагнитных колебаний и вывел формулу для периода свободных колебаний в контуре. За научные заслуги У. Томсон получил титул лорда Кельвина.
Таким образом, абсолютная температура по определению, даваемому формулой (3.7.6), является производной величиной, зависящей от температуры Цельсия и от экспериментально определяемого значения α. Однако она имеет фундаментальное значение.
С точки зрения молекулярно-кинетической теории абсолютная температура связана со средней кинетической энергией хаотического движения атомов или молекул. При T = 0 К тепловое движение молекул прекращается. Подробнее об этом пойдет речь в главе 4.
Зависимость объема от абсолютной температуры
Применяя шкалу Кельвина, закон Гей-Люссака (3.6.4) можно записать в более простой форме. Так как
то
Объем газа данной массы при постоянном давлении прямо пропорционален абсолютной температуре.
Отсюда следует, что отношение объемов газа одной и той же массы в различных состояниях при одном и том же давлении равно отношению абсолютных температур:
Существует минимально возможная температура, при которой объем (и давление) идеального газа обращаются в нуль. Это абсолютный нуль температуры: -273 °С. Удобно отсчитывать температуру от абсолютного нуля. Так строится абсолютная шкала температур.
(1) Наибольшие температуры на Земле — сотни миллионов градусов — получены при взрывах термоядерных бомб. Еще более высокие температуры характерны для внутренних областей некоторых звезд.
(2) Более точное значение абсолютного нуля: -273,15 °С.
Успех Камерлинг-Оннеса
На рассвете 10 июля 1908 года блестящий и амбициозный молодой ученый, работавшим в лаборатории Лейденского университета в Нидерландах, Камерлинг-Оннес и его помощники собрались в своей собственной низкотемпературной лаборатории в Лейдене. Оннес нашел свой собственный источник песка с примесью гелия. И он терпеливо провел годы, добывая и собирая собственные запасы этого дефицитного элемента.
Когда весть о намерении сделать гелий жидким распространилась по университетскому городку, небольшая толпа собралась в лаборатории, чтобы наблюдать.
В 16:20 критические части сборки были залиты жидким водородом, и исследователи открыли главный гелиевый вентиль. Их лабораторный компрессор шумно пыхтел, создавая постепенно увеличивающееся давление внутри расширительного бака. Чтобы увеличить вероятность конденсации гелия. В течение оставшейся части дня ученые непрерывно пополняли жидкий водородный хладагент и наблюдали за термометром. Который опускался к температурам, при которых гелий должен был разжижаться.
С помощью электрической лампы Оннес стал первым человеком на Земле, который увидел жидкий гелий. Ученые не ожидали, что показатель преломления жидкого гелия будет настолько низким, что его будет трудно увидеть при естественном освещении.
Оннес поспешил провести наблюдения с небольшим сосудом с жидкостью -271 °C, прежде чем вся она испарилась. Он обнаружил, что у нее более низкое поверхностное натяжение, чем у любой ранее наблюдаемой жидкости, и составляет всего 1/8 плотности воды.
Термометры
Для измерения температуры можно воспользоваться зависимостью любой макроскопической величины (объема, давления, электрического сопротивления и др.) от температуры.
На практике чаще всего используют жидкостные термометры, в которых учитывают изменение объёма жидкости (обычно это спирт или ртуть) при изменении температуры окружающей среды (рис. 2).
Такие термометры обладают существенными недостатками: 1) диапазон температур ограничен: при низких температурах жидкости затвердевают, при высоких испаряются; 2) показания различных термометров, например ртутного и спиртового, совпадая при 0 °С и 100 °С, не совпадают при других температурах в силу того, что температурные коэффициенты объемного расширения спирта и ртути по-разному зависят от температуры.
В механических термометрах в качестве датчика обычно используется металлическая спираль или лента из биметалла, которые раскручиваются и скручиваются при изменении температуры (рис. 3).
Принцип работы электрических термометров основан на изменении сопротивления проводника при изменении температуры окружающей среды (рис. 4). Электрические термометры более широкого диапазона основаны на термопарах (контакт между металлами с разной электроотрицательностью создаёт контактную разность потенциалов, зависящую от температуры).
Газовые термометры (рис. 5) учитывается то, что давление газа пропорционально температуре при постоянном объеме (V = const). Соединив сосуд, в котором находится газ (чаще водород или гелий), с манометром и, проградуировав прибор, можно измерять температуру по показаниям манометра.
Рис. 5
Газовый термометр непригоден для определения температуры в области высоких температур, при которых происходит термическая диссоциация и ионизация, и очень низких температур, при которых все реальные газы конденсируются. Да и размеры не позволяют использовать его в быту.
См. также
- Бытовые термометры
- Промышленные термометры
- Wikipedia Термометр
Интересные факт
- Самая высокая температура созданная человеком ~ 4 трлн. К (что сравнимо с температурой Вселенной в первые секунды её жизни) была достигнута в 2010 году при столкновении золотых частиц, ускоренных до околосветовых скоростей. Эксперимент был проведён на установке RHIC, расположенной в Брукхейвенской национальной лаборатории, США.
- Самая высокая теоретически возможная температура — планковская температура. Более высокая температура не может существовать, так как всё превращается в энергию (все субатомные частицы разрушатся). Эта температура примерно равна 1.41679(11)⋅1032 °C (примерно 142 нониллиона градусов).
- Самая низкая температура, созданная человеком была получена в 1995 году Эриком Корнеллом и Карлом Виманом из США при охлаждении атомов рубидия. Она была выше абсолютного нуля менее чем на 1/170 млрд долю градуса (5,9⋅10−12).
- Поверхность Солнца имеет температуры около 6000 °С.
См. также
- Аксенович Л.А. и др. Физика в средней школе // 6.12. Температура и тепловое равновесие системы. 6.13. Измерение температуры. 6.14. Абсолютная температурная шкала. Абсолютный нуль
- Кикоин А.К. Температура. Теплота. Теплоемкость (Из истории физики) //Квант. — 1983. — № 11. — С. 26-28
- Wikipedia Температура
Твердое агрегатное состояние
В твердых веществах за счет сильного взаимного притяжения у частиц нет возможности развивать необходимую кинетическую энергию и тем самым передвигаться свободно от заданной позиции при условии сохранения текущей температуры и давления. Частицы твердых веществ располагаются тесно друг от друга и образуют определенную структуру, которую называют кристаллической решеткой.
В твердом веществе молекулы плотно «упакованы». Как правило они образуют регулярную структуру, называемую кристаллической решеткой.
Эталонным примером регулярной кристаллической решетки является кристалл.
Где используется шкала Кельвина
Шкала Кельвина — одна из тремёх основных температурных шкал в международной системе единиц (СИ). В отличие от шкалы Цельсия, которая основана на точках плавления и кипения воды, шкала Кельвина определена на основе абсолютного нуля — минимальной температуры, при которой молекулы вещества полностью свободны от теплового движения.
Поскольку шкала Кельвина основана на абсолютном нуле, она используется там, где точность и сопоставимость измерений температуры являются особенно важными. Вот некоторые области, в которых шкала Кельвина находит применение:
- Научные исследования: В физике, химии, астрономии и других научных дисциплинах шкала Кельвина используется для измерения высоких и низких температур, чтобы обеспечить точность и сопоставимость результатов экспериментов.
- Метеорология: В метеорологии шкала Кельвина используется для измерения температур на поверхности Земли, в атмосфере и в океанах. Это позволяет ученым точно отслеживать изменения климата и прогнозировать погоду.
- Технология: Многие технические процессы и изобретения требуют точного контроля температуры. Шкала Кельвина используется в промышленности, электронике, энергетике и других областях для измерения и регулирования температурных условий.
Использование шкалы Кельвина имеет ряд преимуществ, связанных с ее абсолютной природой
Она обеспечивает универсальность и сопоставимость измерений температуры, что особенно важно в научных и технических полях. Кроме того, шкала Кельвина использована в Международной системе единиц, что подчеркивает ее статус одной из основных температурных шкал
Строительство единицы Кельвина и последствия
С 1954 по 2019 год , единица температуры Международной системы и ее производных единиц , определяемых международной конвенцией, основаны на термодинамической температуре от тройной точки воды, TH 2 OТ= 273,16 К :
- кельвин (K):
- происхождение: K = абсолютный ноль ,
- значение : ТH 2 OТ273,16 (доля 1273,16термодинамическая температура тройной точки воды );
-
градус Цельсия (° C):
- значение: идентично кельвину (т.е. разница температур имеет одинаковое значение в градусах Цельсия и в кельвинах),
- Происхождение: ° С = 273,15 К . Следовательно, тройная точка воды составляет точно 0,01 ° C. Температура плавления льда при атмосферном давлении составляет примерно ° C.
Таким образом, дробь 1 ⁄ 273,16 обусловлена выбором тройной точки воды в качестве точки отсчета и желанием определить единицу измерения температуры, которая позволяет находить обычные температурные интервалы, связанные со старыми температурными шкалами. Хотя нынешнее официальное определение градуса Цельсия основано на кельвине, последний был установлен позже.
Исторически в качестве опорных точек для построения температурных шкал выбирались температура замерзания воды, определяющая ноль, и температура кипения, фиксированная на уровне 100. Таким образом, эти две точки определяли шкалу Цельсия , шаг которой составляет одну сотую разницы температур между эти два момента. Эту температурную шкалу долгое время путали со шкалой Цельсия.
Понятие термодинамической температуры и неявно понятие абсолютной температуры вводит понятие абсолютного нуля , делая ссылку на две точки ненужной. Достаточно одной фиксированной точки отсчета. Тройная точка воды, то есть условия, в которых сосуществуют три состояния воды (жидкое, твердое и газообразное), является точкой неизменной температуры и давления ( нулевой разброс ). Следовательно, он представляет собой фундаментальную фиксированную точку отсчета, более стабильную, чем, например, температура замерзания, которая зависит от многих параметров и может опускаться до -38 ° C для чистой переохлажденной воды .
После того, как эта контрольная точка принята, остается определить интервал в один кельвин, который фиксируется следующим образом: Кельвин — это часть 1 ⁄ 273,16 термодинамической температуры тройной точки воды .
Это, в свою очередь, становится эталоном для определения градуса Цельсия. В результате этой реформы последняя понижается до статуса единицы, производной от Международной системы : единица измерения температуры Цельсий по определению равна единице температуры Кельвин, причем любой температурный интервал имеет одинаковое числовое значение в двух единицы измерения.
Тем не менее, из — за это устройство отбора, точка кипения воды при нормальном атмосферном давлении не зафиксирована на уровне 100 ° C , но при 99.9839 ° C . Тем не менее, этот выбор приводит к очень малым зазором со значением 100, он сохраняет текущие определения морозильных точек и кипения воды при атмосферном давлении: около ° C до примерно 100 ° C .
Строго говоря, только устаревшая шкала Цельсия по-прежнему присваивает точное значение 100 температуре этой точки кипения.
В году определение было уточнено путем уточнения изотопного состава воды, для которой использована тройная точка:
- 0,000 155 76 моль 2 H на моль 1 H ;
- 0,000 379 9 моль 17 О на моль 16 О;
- 0,002,005 2 моль 18 O на моль 16 O.
Этот состав является составом справочного материала Международного агентства по атомной энергии (МАГАТЭ), известного как « Венское стандартное среднее значение океанской воды » (VSMOW, англ. Vienna Standard Mean Ocean Water ), чем рекомендовано Международным союзом чистой и прикладной воды. Химия (ИЮПАК).
В 2018 году было решено переопределить единицы международной системы .
От 20 мая 2019 г.,После работы Международного комитета мер и весов определение кельвина коренным образом меняется. Вместо того, чтобы полагаться на изменения в состоянии воды для определения масштаба, новое определение полагается на эквивалентную энергию, заданную уравнением Больцмана .
- Новое определение
- Значение кельвина K определяется путем фиксации числового значения постоянной Больцмана равным 1,380 649 × 10 -23 Дж · К -1 (или с- 2 м 2 кг · К -1 ).
Кельвин, таким образом , термодинамическое изменение температуры в результате изменения в тепловой энергии из
, или единиц действия, ч в секунду .
kТ{\ displaystyle kT}1,380649×10-23J{\ displaystyle 1,380 \, 649 \ times 10 ^ {- 23} \ mathrm {J}}1,380649×10-236,62607015×10-34{\ displaystyle {\ frac {1,380 \, 649 \ times 10 ^ {- 23}} {6,626 \, 070 \, 15 \ times 10 ^ {- 34}}}}
Макроскопические и микроскопические тела.
Мы живем в макромире, и все предметы, которые нас окружают принято называть макроскопическими телами.
Да может быть ваша любимая кружка в масштабах вселенной кажется не такой уж и большой, чтоб носить приставку макро. Но относительно огромного числа атомов и молекул, из которых она состоит, это название вполне заслуженно.
Сами же атомы и молекулы, а также электроны, протоны, нейтроны принято называть микроскопическими телами или микроскопическими частицами.
Совокупности макроскопических тел или иногда отдельные макроскопические тела называют термодинамическими системами.
Так как эти системы состоят из огромного числа подвижных микроскопических частиц, они способны обмениваться веществом и энергией, как внутри самой системы, так и с окружающей средой.
Только представьте какие процессы происходят в Вашей кружке пока она остывает, дожидаясь Вас на кухне.
И здесь интересный момент. Для описания термодинамической системы не обязательно рассматривать поведение каждой отдельной ее молекулы. Это в принципе невозможно.
Состояние термодинамической системы прекрасно характеризуется набором макроскопических параметров, которые описывают систему в целом. Одним из таких параметров и является температура.
«Тепловое равновесие. Температура. Шкала Цельсия»
Молекулярная физика в отличие от механики изучает системы (тела), состоящие из большого числа частиц. Эти тела могут находиться в различных состояниях, которые называются параметрами состояния. К параметрам состояния относят давление, объём, температуру. Возможно такое состояние системы, при котором параметры, характеризующие его, остаются неизменными сколь угодно долго при отсутствии внешних воздействий. Это состояние называется тепловое равновесие. Так, объём, температура, давление жидкости в сосуде, находящейся в тепловом равновесии с воздухом в комнате, не изменяются, если для этого не будет каких-либо внешних причин.
Температура
Состояние теплового равновесия системы характеризует такой параметр, как температура. Особенностью его является то, что значение температуры во всех частях системы, находящейся в состоянии теплового равновесия, одинаково. Если опустить в стакан с горячей водой серебряную ложку (или ложку из любого другого металла), то ложка будет нагреваться, а вода — остывать. Это будет происходить до тех пор, пока не наступит тепловое равновесие, при котором ложка и вода будут иметь одинаковую температуру, т.е. придут в тепловое равновесие.
Температура — это физическая величина, которая характеризует тепловое состояние тела. Так, температура горячей воды выше, чем холодной; зимой температура воздуха на улице ниже, чем летом.
Единицей температуры является градус Цельсия (°С). Температуру измеряют термометром.
В основе устройства термометра и соответственно способа измерения температуры лежит зависимость свойств тел от температуры, в частности свойство тела расширяться при нагревании. В термометрах могут быть использованы разные тела: и жидкие (спирт, ртуть), и твёрдые (металлы) и газообразные. Их называют термометрическими телами. Термометрическое тело (жидкость или газ) помещают в трубку, снабжённую шкалой, её приводят в соприкосновение с телом, температуру которого хотят измерить.
Повышение температуры газа означает увеличение средней скорости хаотического движения его молекул. Аналогично с повышением температуры возрастает скорость перемещения молекул жидкости и возрастает амплитуда колебаний атомов твердых тел.
Шкала Цельсия. Шкала Кельвина
Существуют разные температурные шкалы. Одной из наиболее распространённых в практике шкал является шкала Цельсия. Основными точками этой шкалы служат температура таяния льда и температура кипения воды при нормальном атмосферном давлении (760 мм рт. ст.). Первой точке приписали значение 0 °С, а второй — 100 °С. Расстояние между этими точками разделили на 100 равных частей и получили шкалу, называемую шкала Цельсия. За единицу температуры по этой шкале принят 1 °С.
Помимо шкалы Цельсия широко используется температурная шкала, названная абсолютной (термодинамической) шкалой температур, или шкала Кельвина. Температура любого тела не может опуститься ниже -273,15 °С. При такой температуре движение молекул полностью прекращается. За ноль по шкале Кельвина принята температура -273,15 °С. Эта температура названа абсолютным нулём температур и обозначается 0 К. Единицей температуры является один кельвин (1 К); он равен 1 градусу Цельсия. Соответственно температура таяния льда по абсолютной шкале температур — 273 К, а температура кипения воды — 373 К.
Температуру по абсолютной шкале обозначают буквой Т. Связь между температурой по абсолютной шкале (Т) и температурой по шкале Цельсия (t°) выражается формулой:
Т = t° + 273.
Как изменяется температура вещества?
Температура вещества зависит от двух основных факторов: добавления или удаления тепла и количества вещества.
Добавление или удаление тепла от вещества может изменить его температуру. Для изменения температуры вещества необходимо изменить его энергию. Энергия может быть добавлена или удалена от вещества в различных формах, таких как тепло или свет. В результате этого, температура вещества может вырасти или упасть.
Количества вещества также влияет на температуру. Температура может быть изменена при добавлении или удалении вещества в систему. Это связано с тем, что степень теплового взаимодействия между молекулами вещества зависит от количества молекул. Следовательно, изменение количества вещества в системе может привести к изменению температуры вещества.
Лорд Кельвин, 1824-1907
Слайд 3
Уильям Томпсон, лорд Кельвин. Познакомившись с теоремой Карно, Томсон высказал идею абсолютной термодинамической шкалы (1848 г.). Он сформулировал второе начало термодинамики (1851 г.); заложил основы теории электромагнитных колебаний и в 1853 г. вывел зависимость периода собственных колебаний контура от его ёмкости и индуктивности (формула Томсона). В 1856 г. учёный открыл третий термодинамический эффект (эффект Томсона). Томсон внёс большой вклад в развитие практического применения науки: он был главным научным консультантом при прокладке первых трансатлантических кабелей, сконструировал ряд электрометрических и навигационных приборов. Известны исследования Томсона по теплопроводности, работы по теории приливов, распространению волн по поверхности, по теории вихревого движения. В 1892 г. учёному был пожалован титул барона Кельвина. В 1896 г. его избрали почётным членом Петербургской академии наук. В последние годы жизни Томсона интересовали рентгеновские лучи и радиоактивность, он выполнил расчёты по определению размеров молекул, выдвинул гипотезу о строении атомов. Умер 17 декабря 1907 г. в своём имении близ города Лэрг (графство Северный Эйршир, Шотландия), похоронен в Вестминстерском аббатстве.
Слайд 4
Температурная шкала Кельвина Температура (от лат. temperatura — надлежащее смешение, соразмерность, нормальное состояние), физическая величина, характеризующая состояние термодинамического равновесия макроскопической системы. В системе СИ температура измеряется в кельвинах. Но на практике часто применяют градусы Цельсия из-за привязки к важным характеристикам воды — температуре таяния льда (0° C) и температуре кипения (100° C). Это удобно, так как большинство климатических процессов, процессов в живой природе и т. д. связаны с этим диапазоном.
Слайд 5
Температурная шкала Кельвина Понятие абсолютной температуры было введено У. Томсоном (Кельвином), в связи с чем шкалу абсолютной температуры называют шкалой Кельвина или термодинамической температурной шкалой. Единица абсолютной температуры — кельвин (К). Абсолютная шкала температуры называется так, потому что мера основного состояния нижнего предела температуры — абсолютный ноль, то есть наиболее низкая возможная температура, при которой в принципе невозможно извлечь из вещества тепловую энергию. Абсолютный ноль определён как 0 K, что приблизительно равно −273.15 °C. Шкала температур Кельвина — температурная шкала, в которой начало отсчёта ведётся от абсолютного нуля.
Слайд 6
Температурная шкала Кельвина Используемые в быту температурные шкалы — как Цельсия, так и Фаренгейта (используемая, в основном, в США), — не являются абсолютными и поэтому неудобны при проведении экспериментов в условиях, когда температура опускается ниже точки замерзания воды, из-за чего температуру приходится выражать отрицательным числом. Для таких случаев были введены абсолютные шкалы температур. Температуре замерзания воды при стандартном атмосферном давлении соответствуют 273,15 K. Число градусов Цельсия и кельвинов между точками замерзания и кипения воды одинаково и равно 100. Поэтому градусы Цельсия переводятся в кельвины по формуле K = °C + 273,15.
Слайд 7
Интересные факты Самая высокая температура созданная человеком ~ 4 трлн. К (что сравнимо с температурой Вселенной в первые секунды её жизни) была достигнута в 2010 году при столкновении золотых частиц, ускоренных до околосветовых скоростей. Эксперимент был проведён на установке RHIC, расположенной в Брукхейвенской национальной лаборатории, США. Самая высокая теоретически возможная температура — планковская температура. Более высокая температура не может существовать, так как всё превращается в энергию (все субатомные частицы разрушатся). Эта температура примерно равна 1.41679(11)⋅1032 °C (примерно 142 нониллиона градусов). Самая низкая температура, созданная человеком была получена в 1995 году Эриком Корнеллом и Карлом Виманом из США при охлаждении атомов рубидия. Она была выше абсолютного нуля менее чем на 1/170 млрд долю градуса (5,9⋅10−12). Поверхность Солнца имеет температуры около 6000 °С.
Слайд 8
-
Донской старочеркасский мужской монастырь сообщение
-
Древняя цивилизация южной америки сообщение
-
Сообщение об игре пятнашки 2 класс
-
Сообщение самая лучшая профессия
- Сообщение как соотносится красота и польза