Физическая передающая среда это в информатике кратко

Лекция 4: среда передачи данных физическая среда передачи данных может представлять собой кабель, то есть набор проводов, изоляционных и защитных оболочек. - презентация

Скорость передачи информации

Под скоростью передачи информации подразумевают не ее физическую скорость, а переданное количество этой информации за единицу времени. 

Напомним, что под информацией мы здесь имеем в виду любые данные, оцифрованные в двоичный код, с которыми работают электронные устройства: компьютеры, телефоны, датчики и т.д. Соответственно, передаваться она может по кабелям, по Интернету и многими-многими другими способами.

Информация передается между устройствами с очень большой скоростью, которой можно просто пренебречь. Практическую ценность будет иметь именно количество информации, передаваемое за определенный промежуток времени.

Чтобы лучше все это понять, представьте такую ситуацию.К вам на праздник собирается прийти большое количество гостей, и всех надо будет накормить. Вы решаете заказать очень много еды из вашего любимого ресторана с доставкой. У этого ресторана всего один курьер, но у него есть электросамокат последней модели, настолько быстрый, что позволяет ему добираться до вашего дома ровно за секунду. Но так как ваш заказ слишком большой и не влезает в сумку полностью, курьеру придется везти ваш заказ по частям и несколько раз возвращаться обратно в ресторан. 

Гораздо важнее для нас будет, сколько именно еды курьер сможет привезти за раз, то есть за 1 секунду, чем то, что его электросамокат едет со скоростью «очень много» км/ч. Так мы узнаем, сколько раз ему надо будет возвращаться в ресторан за следующей партией, и лучше представим общее время доставки полного заказа.

С передачей информации похожая ситуация — нам важно не то, что сигнал будет идти по кабелю меньше секунды, а то, что ровно за одну секунду успеет прийти определенное количество информации

От чего зависит скорость передачи информации?В основном скорость передачи информации определяется каналом связи. Например, радиоканал позволяет передавать до 400 Кбит/с, а оптоволоконный кабель поддерживает скорость до 10 Гбит/с.

Отсюда можно сделать вывод: время передачи информации обратно пропорционально скорости передачи информации, но прямо пропорционально объему передаваемой информации.

Иными словами: чем больше скорость передачи информации, тем меньше время передачи информации. Но при этом, чем больше будет объем самой передаваемой информации, тем больше потребуется времени на ее передачу.

Формула определения времени передачи информации получится следующая:

t = I/v, гдеt — время передачи информации,I — объем передаваемой информации,v — скорость передачи информации.

Разберем пример задачи с такой формулой. Она может встретиться вам в задании 7 ЕГЭ.Даша отправила реферат объемом 16 МБайт преподавателю, отправка заняла 200 секунд. Вычислите объем сочинения, которое Даша отправляла ранее по тому же каналу связи, если его отправка заняла 50 секунд.Решение.Как решать такую задачу? Поймем, что каждое число означает в формате нашей формулы. У нас есть объем реферата — 16 МБайт и 2 разных отрезка времени передач для разных файлов — 200 и 50 секунд. Раз время на отправку сочинения в 200/50 = 4 раза меньше времени на отправку реферата — то и объем сочинения меньше в 4 раза по сравнению с рефератом. Тогда объем сочинения — это 16 МБайт / 4 = 4 МБайт.По правилам оформления экзаменационных бланков в ответ мы запишем только число без указания единиц измерения.Ответ: 4

Среды передачи данных

В сетях раньше использовалось и используется сейчас большое количество разных сред передачи данных. Используются кабели разных типов. Исторически первыми появились телефонные кабели и они же использовались для передачи данных на раннем этапе развития компьютерных сетей.

p, blockquote 9,0,0,0,0 —>

В технологии классический Ethernet использовался коаксиальный, медный кабель, такие кабели еще недавно широко использовались для подключения антенн к телевизорам.

p, blockquote 10,0,0,0,0 —>

Сейчас для построения компьютерных сетей, используются скрученные между собой медные кабели, которые называются витая пара.

p, blockquote 11,0,0,0,0 —>

А также оптические кабели для передачи данных по которым используется свет. Есть технологии, которые позволяют передавать данные прямо по проводам электропитания, которые подходят к розеткам ваших домов. Для этого можно использовать специальные методы модуляции, но они применяются очень редко.

p, blockquote 12,0,0,0,0 —>

Сейчас все большей и большей популярностью пользуются беспроводные технологии. В сетях сотовой связи и вай фай сетях для передачи данных используют радиоволны, а также используется инфракрасное излучение.

p, blockquote 13,1,0,0,0 —>

Возможны использование для передачи данных спутниковые каналы связи (КС), однако такие КС дорогие и скорость таких каналов значительно уступают скорости передачи данных по оптическим кабелям.

p, blockquote 14,0,0,0,0 —>

Также существуют технологии, которые позволяют использовать лазеры, для передачи данных без кабелей. Но сейчас они применяются редко из-за низкой скорости и большого количества помех. Таким образом, сейчас для построения сетей чаще всего используют витую пару, оптические кабели и радиоволны.

p, blockquote 15,0,0,0,0 —>

Витая пара

Витая пара представляет из себя набор медных кабелей в одной оболочке. Кабели попарно скручены между собой, для того, чтобы меньше создавалось помех. В одном кабеле, как правило, находится 4 витые пары. Раньше разные витые пары использовались для передачи данных в разные стороны, но теперь передача данных по все четырем парам проводов выполняется в двух направлениях одновременно.

p, blockquote 16,0,0,0,0 —>

p, blockquote 17,0,0,0,0 —>

Оптический кабель

В оптических кабелях для передачи данных используются тонкие световоды. Каждый световод покрывается защитной оболочкой и несколько световодов объединяются в один кабель.

p, blockquote 18,0,0,0,0 —>

p, blockquote 19,0,0,0,0 —>

Радиоволны

Сейчас всё больше и больше для передачи данных используются беспроводные технологии на основе радиоволн. В отличии от кабелей, сигнал в беспроводной среде распространяется по разным направлениям. Один и тот же сигнал могут принимать несколько приемников.

p, blockquote 20,0,0,1,0 —>

Если несколько источников радиоволн рядом друг с другом, то эти сигналы искажаются, поэтому использование радиоволн, регулируется законодательством. И разные раздел спектра выделены для использования различными технологиями.

p, blockquote 21,0,0,0,0 —>

Например, для сотовой связи стандарта GSM, который популярен сейчас в России используется диапазон 900 МГц. Однако этот диапазон не может использовать кто угодно, для этого необходимо сначала купить лицензию у государства.

p, blockquote 22,0,0,0,0 —>

Для работы сетей вайфай используется два диапазона 2.4 ГГц и 5 ГГц. Это специальные диапазоны, частоты в которых можно использовать без получения лицензии, поэтому вы можете спокойно устанавливать у себя wi-fi роутер не спрашивая ни у кого разрешение.

p, blockquote 23,0,0,0,0 —>

Общая схема передачи информации

Передача информации — процесс перемещения сообщений в пространстве в виде сигналов от одного объекта к другому.

Основные элементы процесса передачи информации, без которых он невозможен:

Источник информации. В качестве источника могут выступать любые объекты, которые способны отправлять информацию — как живые существа, так и технические устройства.

Кодирующее устройство. В зависимости от того, каким образом передается информация, она должна быть представлена в определенном виде. Например, в электромагнитных, звуковых или световых волнах.

Канал связи. Среда, по которой протекает закодированная информация. Каналы делятся по способу распространения информации. Например, проводные, световые, акустические (звуковые), радиоканалы.

Декодирующее устройство преобразует информацию из закодированного вида, предназначенного для ее передачи, в ее исходный вид. Например, экран телевизора или монитор ноутбука.

Получатель информации. Объект или живое существо, которому отправленная информация предназначалась.

Таким образом, информация, созданная источником, кодируется, передается по каналу связи, декодируется и воспринимается получателем. Весь этот набор процессов и составляет процесс передачи информации.

Как развивались способы передачи информации?Потребность в передаче информации зародилась во времена первых человеческих цивилизаций. С тех пор средства общения между людьми постоянно совершенствовались вместе с развитием культуры и техники. 

Надо понимать, что в реальности многие способы передачи информации задействуют сразу несколько каналов связи из вышеперечисленных. Разберем примеры, с которых начинали статью. 

Зебра, оповещающая сородичей об опасности — самый простой пример передачи информации, так как задействуется только звуковой канал: зебра кричит — другие зебры ее слышат. Поскольку здесь не меняется канал связи — нет и явных кодирующих и декодирующих устройств, кроме рта и ушей зебр, конечно же. 

Друг, отправляющий гифку, задействует уже 2 канала связи: интернет и ваш зрительный канал. Как все происходило? Кто-то снял котика на камеру, оцифровал с помощью кодирующего устройства, гифка попала на компьютер друга, который отправил ее со своего компьютера. Она пришла на ваш компьютер, последний вывел изображение на монитор (монитор — декодирующее устройство), вы увидели гифку и умилились.

Телевидение задействует еще более сложную систему каналов передачи информации, в которой участвуют слуховой, зрительный каналы и спутниковый/проводной канал связи, применяемый в работе телевизора. Итак, ведущий сообщил прогноз погоды, видеокамера сняла его и карту на стене, которой он пользовался и в каком-то формате преобразовала эти данные (видеокамера — кодирующее устройство). Эти данные были переданы на ваш телевизор, который преобразовал данные обратно в звук голоса ведущего и изображение карты (телевизор — декодирующее устройство). Вы увидели, прослушали прогноз и решили надеть куртку.

Представление информации

Для представления информации в виде сигналов которые будут передаваться по каналам связи, есть два подхода. Первый подход это прямоугольные импульсы или цифровые, а второй синусоидальные волны или аналоговый.

p, blockquote 25,0,0,0,0 —>

Цифровые сигналы используются при передаче данных по медным проводам. Самый простой способ цифрового представления использовать 0 отсутствием напряжения, а 1 повышенным уровнем напряжения, однако, на практике применяются более сложные схемы. Для представления информации в аналоговом виде используется модуляция. Можно менять частоту сигнала, фазу и амплитуду.

p, blockquote 26,0,0,0,0 —>

«Витая пара»

Кабель типа «витая пара» (twisted pair), является одним из наиболее распространенных типов кабеля в настоящее время. Он состоит из нескольких пар медных проводов, покрытых пластиковой оболочкой. Провода, составляющие каждую пару, закручены вокруг друг друга, что обеспечивает защиту от взаимных наводок. Кабели данного типа делятся на два класса — «экранированная витая пара» («Shielded twisted pair») и «неэкранированная витая пара» («Unshielded twisted pair»). Отличие этих классов состоит в том, что экранированная витая пара является более защищенной от внешней электромагнитной интерференции, благодаря наличию дополнительного экрана из медной сетки и/или алюминиевой фольги, окружающего провода кабеля. Сети на основе «витой пары» в зависимости от категории кабеля обеспечивают передачу со скоростью от 10 Мбит/с – 1 Гбит/с. Длина сегмента кабеля не может превышать 100 м (до 100 Мбит/с) или 30 м (1 Гбит/с).

Устройство кабеля типа «витая пара»

Оптоволоконный кабель

Оптоволоконные кабели представляют собой наиболее современную кабельную технологию, обеспечивающую высокую скорость передачи данных на большие расстояния, устойчивую к интерференции и прослушиванию. Оптоволоконный кабель состоит из центрального стеклянного или пластикового проводника, окруженного слоем стеклянного или пластикового покрытия и внешней защитной оболочкой. Передача данных осуществляется с помощью лазерного или светодиодного передатчика, посылающего однонаправленные световые импульсы через центральный проводник. Сигнал на другом конце принимается фотодиодным приемником, осуществляющим преобразование световых импульсов в электрические сигналы, которые могут обрабатываться компьютером. Скорость передачи для оптоволоконных сетей находится в диапазоне от 100 Мбит/c до 2 Гбит/с. Ограничение по длине сегмента составляет 2 км.

Устройство оптоволоконного кабеля

Физическая и логическая топологии

Термин топология может употребляться для обозначения двух понятий – физической топологии и логической топологии.

Физическая топология – способ физического соединения компьютеров с помощью среды передачи, например, участками кабеля.

Логическая топология определяет маршруты передачи данных в сети. Во многих случаях, физическая топология однозначно определяет логическую топологию. Однако существуют такие конфигурации, в которых логическая топология отличается от физической. Например, сеть с физической топологией «звезда» может иметь логическую топологию «шина» – все зависит от того, каким образом устроен сетевой концентратор.

Физическая топология сети

Еще одним важным понятием физического уровня является способ соединения компьютеров с помощью физической среды или топология сети. Если сеть состоит всего из двух компьютеров, то они соединяются «напрямую». Такой способ соединения получил название «точка-точка» («point-to-point»).

Соединение типа «точка-точка»

Для обеспечения связи более чем двух компьютеров может использоваться последовательность соединений типа «точка-точка».

Последовательность соединений типа «точка-точка»

Однако такой подход требует установки на большую часть компьютеров нескольких устройств передачи данных.В качестве альтернативного подхода возможно использование более сложных топологий, позволяющих подключить к общей среде сразу несколько компьютеров, имеющих по одному устройству передачи данных. Выделяют три базовые топологии: «Шина» («bus»), «Кольцо» («ring»), «Звезда»(«star»).

Архивация

При этом есть еще один способ потенциально уменьшить время передачи информации. Представьте, что тот самый курьер ресторана перед отправкой вашего заказа сможет очень грамотно его упаковать, из-за чего он будет занимать меньше места. Теперь ваш заказ будет разделен на гораздо меньшее количество упакованных частей. Курьер будет меньше раз возвращаться в ресторан, и сама доставка займет меньше времени. 

Но при этом надо учитывать, что на упаковку заказа курьеру придется потратить еще какое-то время А после полной его доставки вы также потратите время на его распаковку.

Что такое архивация и почему она нужна не всегда?В случае с информацией этот процесс называется архивацией, по-простому — сжатием. Специальная программа-архиватор перед отправкой заархивирует (сожмет) информацию, после чего ее размер станет меньше, и времени на передачу информации понадобится меньше. Но сам архиватор займет определенное время на сжатие информации, а после ее передачи также уйдет время на ее распаковку.

Насколько архивация целесообразна, зависит от ситуации.Рассмотрим следующее условие задачи №7 ЕГЭ. Нужно передать 20 мбайт информации по каналу связи, скорость передачи по этому каналу составляет 220 бит в секунду. При этом у нас есть архиватор, который потратит на сжатие информации 10 секунд, на распаковку после передачи — 2 секунды, а сжатая информация будет занимать 60% от исходного размера. 

Как выгоднее поступить — отправлять информацию сразу или потратить время на архивацию и передавать ее в сжатом виде? А на сколько секунд будет отличаться время отправки в разных сценариях?

Чтобы это выяснить, посчитаем оба варианта.

  1. Отправить информацию сразу.Несжатая информация занимает \(20\) мбайт \(=20*2^{23}\) бит. Тогда передача информации займет 

\(t_1 = 20 * 2^{23}/ 2^{20} = 20 * 2^3 = 20 * 8 = 160\) c.

Потратить время на архивацию.Сжатая информация будет занимать \(20*0,6=12\) мбайт, и времени на передачу (с учетом архивации и распаковки) потребуется

\(t_2=12*2^{23}/ 2^{20}+10+2=12*8+12=108\) с.

В данном случае сжать данные перед отправкой целесообразно, так мы сэкономим больше времени, чем потеряем, и в итоге способ отправки со сжатием будет быстрее на 160 – 108 = 52 секунды.

Но если бы архивация шла не так хорошо — если бы сжатая информация занимала 80% от исходного размера, на сжатие уходило бы 30 секунд, а на распаковку — 5 секунд, то ситуация бы изменилась.

Теперь сжатая информация занимала бы 16 мбайт, а на ее отправку потребовалось бы

\(t_3=16*2^{23}/ 2^{20}+30+5=16*8+35=163\) с.

С таким архиватором мы больше потеряем времени, чем сэкономим, поэтому в данной ситуации было бы выгоднее отправлять данные без сжатия, такой способ сохранил бы нам 163 – 160 = 3 секунды.

Задачи на архивацию, подобные рассмотренной выше, могут встретиться в номере 7 ЕГЭ, а также работа с архивом понадобится при выполнении заданий 11 и 12 ОГЭ. При решении задания №7 ЕГЭ нужно обязательно помнить о том, что:1. Архивация не панацея. Она занимает время, и в некоторых случаях довольно немалое. Поэтому всегда надо просчитывать оба варианта передачи данных — без архивации и с ней.2. Для обоих способов лучше переводить все величины в биты. Это правило применимо и при решении большинства задач на информацию, так что запоминаем его.

Таким образом, мы узнали, как работать с передаваемыми данными, как с помощью архивации оптимизировать хранение и передачу данных, а также как решать задачи на все эти темы.

Модель канала связи

Мы воспользуемся преимуществом организации сетей в виде уровней, каждый из которых предоставляет сервис вышестоящему уровню и обеспечивает изоляцию решений

Мы будем считать, что физический уровень, каким-то образом передает биты, как он это делает нам не важно, нам важно, что у нас есть просто канал связи по которому мы можем передавать некоторые сообщения, от отправителя к получателю. 

У канала связи есть важные для нас характеристики: 

  • Пропускная способность, которая измеряется в бит/с, т.е. сколько данных мы можем передать за единицу времени. Как правило пропускная способность современных каналов связи измеряется в Гб/с. 
  • Следующая важная характеристика канала это задержка. Она говорит о том, сколько времени пройдет, прежде чем сообщение от отправителя дойдет до получателя. В современных КС задержка очень маленькая, но не нулевая. Совместно, пропускная способность и задержка характеризуют скорость работы канала. 
  • Еще одна важная характеристика это то, насколько часто там возникают ошибки. Если ошибки в канале возникают часто, то протоколы или сетевые технологии должны обеспечивать исправление ошибок. А если ошибки в КС возникают редко, то их можно исправлять на вышестоящих уровня модели взаимодействия открытых систем OSI, например на транспортном. А само сетевое оборудование может не обеспечивать гарантию доставки данных и отсутствие ошибок. 

В зависимости от направления по которому можно передавать данные, КС бывают 3 типов: 

  • Симплексный КС по которому можно передавать данные только в одну сторону;
  • Дуплексный, можно передавать данные в обе стороны одновременно;
  • Полудуплексный, можно передавать данные в обе стороны, но по очереди. 
Понравилась статья? Поделиться с друзьями:
Умный ребенок
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: