Химия

Получение

Существуют вещества, которые при нормальных условиях сохраняются в газообразном агрегатном состоянии. Их можно разделить на две группы:

  • простые – азот, кислород, хлор;
  • сложные – аммиак, метан, углекислый газ.

Газы выделяют из атмосферы или природного газа путём окисления и адсорбции примесей.

Образованию газообразного состояния веществ способствует изменение нормальных условий. Жидкие или твёрдые вещества нагревают, тем самым разрушая химические связи и высвобождая отдельные молекулы в воздух. Например, жидкая вода при нагревании легко превращается в водяной пар, а твёрдый йод выделяет фиолетовые пары.

Рис. 1. Фиолетовые пары йода.

В лабораториях газ получают путём разложения (сжигания) сложных веществ или реакцией жидких и твёрдых соединений. Способы получения некоторых газов:

  • водорода:
    Zn + 2HCl = ZnCl2 + H2↑;
  • кислорода:
    2KMnO4 = K2MnO4 + MnO2 + О2↑;
  • углекислого газа:
    CaCO3 + 2HCl = CaCl2 + H2O + CO2↑;
  • аммиака:
    NH4Cl + NaOH = NaCl + H2O + NH3↑.

Рис. 2. Получение кислорода.

Полученный газ обнаруживают разными способами. Например, пропускают через жидкость и наблюдают за изменением цвета, прозрачности (известковое молочко мутнеет в присутствии углекислого газа). Некоторые газы поддерживают горение или, наоборот, тушат тлеющую лучину.

Газообразное состояние

На молекулярном уровне газ представляет собой хаотически движущиеся, сталкивающиеся со стенками сосуда и между собой молекулы, которые друг с другом практически не взаимодействуют. Поскольку молекулы газа между собой не связаны, то газ заполняет весь предоставленный ему объем, взаимодействуя и изменяя направление только при ударах друг о друга.

К сожалению, невооруженным глазом и даже с помощью светового микроскопа увидеть молекулы газа невозможно. Однако газ можно потрогать. Конечно, если вы просто попробуете ловить молекулы газов, летающие вокруг, в ладони, то у вас ничего не получится. Но наверняка все видели (или делали это сами), как кто-то накачивал воздухом шину автомобиля или велосипеда, и из мягкой и сморщенной она становилась накачанной и упругой. А кажущуюся «невесомость» газов опровергнет опыт, описанный на странице 39 учебника «Химия 7 класс» под редакцией О.С. Габриеляна.

Это происходит потому, что в замкнутый ограниченный объем шины попадает большое количество молекул, которым становится тесно, и они начинают чаще ударяться друг о друга и о стенки шины, а в результате суммарное воздействие миллионов молекул на стенки воспринимается нами как давление.

Но если газ занимает весь предоставленный ему объем, почему тогда он не улетает в космос и не распространяется по всей вселенной, заполняя межзвездное пространство? Значит, что-то все-таки удерживает и ограничивает газы атмосферой планеты?

Совершенно верно. И это — сила земного тяготения. Для того чтобы оторваться от планеты и улететь, молекулам нужно развить скорость, превышающую «скорость убегания» или вторую космическую скорость, а подавляющее большинство молекул движутся значительно медленнее.

Тогда возникает следующий вопрос: почему молекулы газов не падают на землю, а продолжают летать? Оказывается, благодаря солнечной энергии молекулы воздуха имеют солидный запас кинетической энергии, который позволяет им двигаться против сил земного притяжения.

Изменение жидкостей

Жидкости — это тела, занимающие весь объем, в котором находятся, образующие поверхность, но не способные удерживать упругую форму. Для них свойственно сильное межмолекулярное взаимодействие и низкая сжимаемость, что определяет их положение между газообразным и твердым АС. Жидкости изотропны, текучи и обладают удельным весом, сравнимым с тем же показателем у твердых тел.

Правильное расположение внутренних частиц распространяется на небольшие области — они не только колеблются вокруг узлов так называемой квазикристаллической решетки, но и могут перескакивать между ними. Получается сложная траектория — колебания вокруг центра, перемещающегося в пространстве. Этим объясняется текучесть тел в жидком АС. Если понизить температуру до границ кристаллизации, то различные тепловые свойства жидкостей приблизятся к показателям твердых тел.

Процесс парообразования

Некоторые молекулы жидкости могут преодолеть силы поверхностного натяжения и перейти в парообразную форму, чем объясняется явление испарения, происходящее при любой температуре. Когда она повышается, процесс становится интенсивней и распространяется на весь объем. Появляется все больше пузырьков насыщенного пара, прорывающихся из глубины на поверхность.

При температуре кипения, имеющей определенное значение для каждого жидкого тела, давление пара внутри пузырьков превышает атмосферное, и начинается интенсивный переход жидкости в газообразное АС. При пониженном атмосферном давлении температура кипения той же жидкости становится ниже.

Динамическое равновесие

Когда жидкость находится в открытой емкости, то ее количество обязательно уменьшится вследствие испарения. Но если сосуд закрыть, то этого не произойдет. Сначала начнется процесс испарения и продолжится до тех пор, пока число покинувших жидкость молекул не станет равно возвратившимся назад из паров.

Можно сказать, что замкнутая система придет в динамическое (подвижное) равновесие, так как процесс обмена молекул будет продолжаться и дальше, т. е. испарение и конденсация в замкнутой системе происходят одновременно и компенсируют друг друга. Пар, который находится в таком равновесии с соответствующей жидкостью, называется насыщенным. Изменение внутренней энергии вещества определяется по формуле: ΔU = ± mr, где m — масса тела, r — удельная теплота парообразования.

Динамическое равновесие у разных жидкостей наступает при разной плотности пара. Это зависит от силы межмолекулярного взаимодействия. Если они велики как, например, у ртути, то только незначительное число самых быстрых молекул может покидать поверхность жидкости, а равновесие наступает при малой плотности пара. У летучих жидкостей молекулы разлетаются очень быстро, поэтому нужна высокая плотность для наступления равновесия.

Четыре агрегатных состояния вещества

Газообразное состояние вещества – одно из трех «классических». Помимо него, выделяются также твердые и жидкие вещества. В последнее время в учебниках встречается определение и четвертого агрегатного состояния – плазмы. Это ионизированные (частично или полностью) газы. Четвертый тип агрегатного состояния был выявлен при изучении космоса, и, оказывается, он встречается во Вселенной чаще всего. Плазма – это составная часть многих планет, основа звезд, туманностей, высших слоев атмосферы Земли.

Агрегатные состояния вещества – это различные формы, в которых может находиться вещество в зависимости от температуры и давления. Существует четыре основных агрегатных состояния: твердое, жидкое, газообразное и плазма.

Каждое из этих состояний имеет свои уникальные свойства, описанные в таблице ниже:

Агрегатное состояние Форма Объем Плотность Форма молекул Примеры
Твердое Имеет определенную форму Относительно малый Высокая Регулярная Лед, железо
Жидкое Принимает форму сосуда Фиксированный Средняя Беспорядочная Вода, масло
Газообразное Заполняет все доступное пространство Большой Низкая Беспорядочная Воздух, кислород
Плазма Не имеет определенной формы Нет Низкая Ионизированные молекулы Солнечная корона, молнии

Твердые вещества имеют определенную форму и объем, и сохраняют свою форму при изменении условий. Молекулы в твердых веществах находятся на фиксированных расстояниях друг от друга, что придает им регулярную форму.

Жидкости, с другой стороны, принимают форму сосуда, в котором они находятся, и имеют фиксированный объем. Молекулы в жидкостях находятся ближе друг к другу, чем в газах, но все еще могут двигаться относительно друг друга, что придает им беспорядочную форму.

Газы заполняют все доступное пространство и не имеют фиксированной формы или объема. Молекулы в газах находятся на больших расстояниях друг от друга и двигаются хаотично.

Плазма – это редкое состояние вещества, которое обычно находится при очень высоких температурах или в космическом пространстве. Плазма состоит из ионизированных молекул, которые не имеют определенной формы или объема.

Примеры каждого из этих агрегатных состояний включают в себя лед и железо (твердые вещества), воду и масло (жидкости), воздух и кислород (газы) и солнечную корону и молнии (плазма).

Далее речь пойдет о газах. Они были открыты сравнительно недавно, позже жидких и твердых веществ, так как не поддавались изучению человеческим глазом. Развитие науки в сфере газообразных соединений началось с XVII века.

Переходы между агрегатными состояниями

Многие вещества при изменении условий могут переходить из одного агрегатного состояния в другое.

Пример. При температуре ниже 0 °C вода превращается в лёд, т. е. переходит из жидкого состояния в твёрдое.

Переход вещества из газообразного состояния в жидкое называется конденсацией. Переход вещества из жидкого состояния в газообразное называется испарением.

При увеличении температуры вещества испарение становится интенсивнее. И, наконец, при определённой температуре испарение становится настолько интенсивным, что жидкость закипает. Такая температура называется температурой кипения вещества. Испарение и кипение — это два способа перехода жидкости в газообразное состояние.

Испарение происходит с поверхности жидкости, а при кипении жидкость переходит в газообразное состояние, как с поверхности, так и внутри неё.

Когда говорят о веществах в газообразном состоянии, иногда помимо термина газ используется и слово пар. Газ и пар очень похожи между собой. Они представляют собой разновидности газообразного состояния вещества.

Разница между газом и паром в том, что газ имеет температуру выше критической или равную ей, а пар — ниже.

Пример. Критическая температура воды равна примерно 374 °C. Вода в газообразном состоянии, которая имеет температуру ниже критической, например, 5 °C или 120 °С, будет именно паром, а не газом. А вот, например, кислород, гелий и азот – газы, так как они имеют температуру выше критической (у каждого из них критическая температура ниже -100 °C).

В быту под словом пар обычно подразумевают именно водяной пар.

Переход вещества из жидкого состояния в твёрдое называется кристаллизацией. Переход вещества из твёрдого состояния в жидкое называется плавлением.

Переход вещества из твёрдого состояния сразу в газообразное называется возгонкой или сублимацией. Переход из газообразного состояния в твёрдое называется десублимацией.

При всех этих явлениях частицы вещества не разрушаются. Таким образом, вещество, изменяя агрегатное состояние, не превращается в другое вещество.

Одни вещества могут иметь любое из трёх агрегатных состояний, другие — нет.

Пример. Вода может находиться в твёрдом состоянии (лёд), жидком (вода) и газообразном (водяной пар). Для сахара известны только два агрегатных состояния: твёрдое и жидкое.

При нагревании сахар плавится, затем его расплав темнеет, и появляется неприятный запах. Это свидетельствует о превращении сахара в другие вещества. Значит, газообразного состояния для сахара не существует.

Взаимные переходы веществ из одного агрегатного состояния в другое в виде схемы:

Газообразное состояние

При нормальных условиях (273 К, 101325 Па) в газообразном состоянии могут находиться как простые вещества, молекулы которых состоят из одного атома (Не, Ne, Ar) или из нескольких несложных атомов (Н2, N2, O2), так и сложные вещества с малой молярной массой (СН4 , HCl, C2H6).

Поскольку кинетическая энергия частиц газа превышает их потенциальную энергию, то молекулы в газообразном состоянии непрерывно хаотически двигаются. Благодаря большим расстояниям между частицами силы межмолекулярного взаимодействия в газах настолько незначительны, что их не хватает для привлечения частиц друг к другу и удержания их вместе. Именно по этой причине газы не имеют собственной формы и характеризуются малой плотностью и высокой способностью к сжатию и к расширению. Поэтому газ постоянно давит на стенки сосуда, в котором он находится, одинаково во всех направлениях.

Для изучения взаимосвязи между важнейшими параметрами газа (давление Р, температура Т, количество вещества n, молярная масса М, масса m) используется простейшая модель газообразного состояния вещества — идеальный газ, которая базируется на следующих допущениях:

  • взаимодействием между частицами газа можно пренебречь;
  • сами частицы являются материальными точками, которые не имеют собственного размера.

Наиболее общим уравнением, описывающим модель идеального газа, считается уравнения Менделеева-Клапейрона для одного моля вещества:

Однако поведение реального газа отличается, как правило, от идеального. Это объясняется, во-первых, тем, что между молекулами реального газа все же действуют незначительные силы взаимного притяжения, которые в определенной степени сжимают газ. С учетом этого общее давление газа возрастает на величину a/V2, которая учитывает дополнительное внутреннее давление, обусловленное взаимным притяжением молекул. В результате общее давление газа выражается суммой Р+ а/V2. Во-вторых, молекулы реального газа имеют хоть и малый, но вполне определенный объем b , поэтому действительный объем всего газа в пространстве составляет V —  b. При подстановке рассмотренных значений в уравнение Менделеева-Клапейрона получаем уравнение состояния реального газа , которое называется уравнением Ван-дер-Ваальса:

где а и b — эмпирические коэффициенты, которые определяются на практике для каждого реального газа. Установлено, что коэффициент a имеет большую величину для газов, которые легко сжижаются (например, СО2 , NH3 ), а коэффициент b — наоборот, тем выше по величине, чем больше размеры имеют молекулы газа (например, газообразные углеводороды).

Уравнение Ван-дер-Ваальса гораздо точнее описывает поведение реального газа, чем уравнения Менделеева-Клапейрона, которое тем не менее, благодаря наглядному физическому смыслу широко используется в практических расчетах. Хотя идеальное состояние газа является предельным, мнимым случаем, однако простота законов, которые ему отвечают, возможность их применения для описания свойств многих газов в условиях низких давлений и высоких температур делает модель идеального газа очень удобной.

Основные ученые, внесшие вклад в развитие учения о газах

Таких людей можно назвать множество, ведь изучение газов – процесс трудоемкий и исторически долгий. Остановимся на самых известных личностях, сумевших сделать наиболее значимые открытия.

Амедео Авогадро в 1811 году сделал открытие

Неважно, какие газы, главное, что при одинаковых условиях их в одном объеме их содержится равное количество по числу молекул. Существует рассчитанная величина, имеющая название по фамилии ученого. Она равна 6,03*1023 молекул для 1 моль любого газа.
Ферми – создал учение об идеальном квантовом газе.
Гей-Люссак, Бойль-Мариотт – фамилии ученых, создавших основные кинетические уравнения для расчетов.
Роберт Бойль.
Джон Дальтон.
Жак Шарль и многие другие ученые.

Она равна 6,03*1023 молекул для 1 моль любого газа.
Ферми – создал учение об идеальном квантовом газе.
Гей-Люссак, Бойль-Мариотт – фамилии ученых, создавших основные кинетические уравнения для расчетов.
Роберт Бойль.
Джон Дальтон.
Жак Шарль и многие другие ученые.

Частицы

Вещества состоят из еще меньших единиц. Они настолько маленькие, что их невозможно увидеть без микроскопа. Их называют частицы.

Частицы сохраняют свойства вещества. В качестве опыта можно размешать кусочек сахара в воде. От этого жидкость станет сладкой, но вещества мы не увидим, поскольку частицы сахара смешались с частицами воды.

Между частицами есть свободное пространство. Состояние вещества будет завесить от того, как плотно находятся в нем элементы. В твердых веществах промежутков между частицами почти нет, в жидких – имеется некоторое расстояние между элементами, а в газообразных – частицы свободно перемещаются, поскольку между ними большое расстояние.

Рис. 3. Частицы в разных телах

Газы и плазма

Газообразные вещества характеризуются малой плотностью, поэтому заполняют весь доступный им объём и не сохраняют форму. Их молекулы движутся свободно и хаотически, имеют преобладающую над потенциальной кинетическую энергию, а слабые взаимодействия между ними сводятся к спорадическим столкновениям, сопровождающимся резким изменением характера перемещения.

Для газов характерны следующие фазовые переходы:

  • при десублимации переходят в твёрдое состояние;
  • при конденсации — в жидкое;
  • при ионизации — в плазму.

Жидкое и газообразное состояния близки друг другу. Их отличия и сходства перечислены в таблице.

Сходства Отличия
Текучесть Отсутствие фиксированного объёма
Сопротивляемость деформации Неспособность к образованию свободной поверхности (стремление заполнить весь доступный объём)

Химические свойства газов и их смесей варьируются от инертности до взрывчатости. Кроме того, для них характерна изотропия (одинаковость характеристик во всех направлениях).

Частично или полностью ионизированный при высокой температуре газ называется плазмой. Резкая граница перехода отсутствует, поэтому такую фазу не всегда считают одним из основных состояний. Зачастую указываются только 3 из них.

Свойства плазмы и газа сходны, однако четвёртым агрегатным состоянием её делают следующие отличия:

  • очень высокая электрическая проводимость;
  • несколько сортов частиц;
  • возможность немаксвелловского распределения скоростей;
  • коллективные взаимодействия частиц.

Плазма очень распространена во Вселенной. Она входит в состав следующих объектов:

  • звёзды, существующие за счёт термоядерных реакций (в том числе Солнце);
  • солнечный ветер;
  • межпланетная среда;
  • межзвёздное и межгалактическое пространство;
  • туманности.

В земных условиях в природе она содержится в молниях, огнях святого Элмо, ионосфере, полярном сиянии, огне. Кроме того, её создают искусственно в следующих видах:

  • вещество люминесцентных и неоновых ламп;
  • электрическая дуга;
  • плазменная лампа;
  • мониторы и экраны телевизоров.

Плазма состоит из заряженных частиц (в первую очередь, свободных электронов, положительных и отрицательных ионов). Их подвижность делает её способной проводить электрический ток.

Более сложные состояния

Помимо основных состояний, в физике существуют и несколько более сложных фаз. Они делятся на следующие виды:

  • низкотемпературные;
  • высокоэнергетические;
  • обусловленные большим давлением.

Низкотемпературные и высокоэнергетические

При температурах, близящихся к минимальному пределу, измеряемому менее, чем в миллионной доле Кельвина, у некоторых веществ проявляются особые способности. Например, жидкий гелий может протекать через узкие отверстия без трения. В таких условиях возникают новые агрегатные состояния, например:

  1. Бозе-эйнтштейновский конденсат — вещество, состоящее в основном из бозонов, у которого квантовые эффекты можно наблюдать невооружённым глазом.
  2. Фермионный конденсат — сверхпроводимое вещество, в чей состав входят атомы-фермионы (к примеру, кварки, лептоны, дырки).
  3. Вырожденный газ — вещество с одинаковыми частицами, свойства которого определяются эффектами квантовой механики.
  4. Сверхтекучее твёрдое тело — кристалл, обладающий нулевой вязкостью и другими свойствами текучей жидкости.

Энергия столкновения микрообъектов может быть существенно выше, чем их массы. Физике известны 2 высокоэнергетических состояния со следующими характеристиками:

  1. Глазма — плотная система линейных связанных полей, образующаяся при высокоскоростных столкновениях адронов между собой.
  2. Кварк-глюонная плазма — разрушенная материя, породившая множество беспорядочно движущихся частиц (предполагается, что именно в виде такой плазмы вещество Вселенной состояло в первые мгновения своего расширения).

Другие фазы

При сверхвысоком давлении, сжатии силами гравитации и не очень большой температуре отрицательно заряженные частицы вещества объединяются с положительными, и оно принимает нейтронное состояние.

Ещё одной интересной формой вещества является тёмная материя, главная характеристика которой заключается в отсутствии испускания и взаимодействия с электромагнитным излучением. Из-за этого её непосредственное наблюдение, а также исследование природы и состава не представляется возможным, а существование обнаружено только благодаря имеющимся гравитационным эффектам.

Когда тело подвергают температуре и давлению выше конечной точки сосуществования фаз, оно превращается в сверхкритическую жидкость. В этом состоянии стирается разница между свойствами жидкого и газообразного веществ и приобретаются следующие характеристики:

  • высокая плотность;
  • низкая вязкость;
  • неимение поверхностного натяжения.

Знать все состояния вещества человечество пока что не может. Это легко проиллюстрировать на примере вырожденной материи.

Идеальный газ Ферми-Дирака (вещество звёзд, относящихся к Белым карликам) при сверхвысоком давлении приобретает состав из одних нейтронов, а при поднятии температуры становится кварк-глюонной плазмой. При дальнейшем увеличении давления тело сжимается в чёрную дыру. Однако, что произойдёт с ним при одновременном повышении этих параметров и достижении планковской температуры, учёным до сих пор неизвестно.

Таким образом, физические свойства окружающих человека тел, а тем более космических объектов, не ограничиваются тремя или четырьмя агрегатными состояниями. Их гораздо больше, что открывает огромное поле для исследований.

Физические свойства

Молекулы газообразного вещества постоянно движутся, а расстояние между ними значительно превышает их диаметр. Благодаря такому расположению частиц газы не имеют формы, легко смешиваются и сжимаются.

Газообразные соединения приобретают форму сосуда, в котором находятся. Ударяясь о стенки сосуда с определённой скоростью, газы создают давление. Чем интенсивнее молекулы воздействуют на сосуд, тем выше давление.

Различные газообразные соединения смешиваются между собой в любых пропорциях. Природный газ – это смесь метана, водорода, сероводорода, углекислого газа, азота, гелия. Атмосфера состоит из смесей простых и сложных газообразных веществ – азота, кислорода, водорода, углекислого газа, водяного пара.

Рис. 3. Соотношение газов в атмосфере.

При сжатии объём газов становится значительно меньше. Например, объём кислорода уменьшается в 200 раз.

Описание некоторых газообразных веществ представлено в таблице.

Газ

Формула

Физические свойства

Нахождение в природе

Водород

Н2

Самый лёгкий газ, легче воздуха в 14,5 раз. Не имеет вкуса, запаха, цвета. Плохо растворяется в воде (18,8 мл/100 г), но хорошо растворяется в металлах, особенно в палладии. Сжижается при -252,76°C

В земной коре – 1 %, незначительное количество в атмосфере. Большая часть водорода присутствует в виде соединений

Кислород

О2

Не имеет вкуса, цвета, запаха. Немного тяжелее воздуха. Плохо растворяется в воде (4,9 мл/100 г) и спирте (2,78 мл/100 г), но хорошо растворяется в жидком серебре. Сжижается при -182,98°C

47 % земной коры состоит из кислорода. Моря и пресные водоёмы содержат 85 % кислорода. В атмосфере – 20 %

Азот

N2

Бесцветный газ без запаха. Плохо растворим в воде (2,3 мл/100 г). Атомы азота связаны тройной трудно разрываемой связью. Сжижается при -195,8°C

В атмосфере – 78 %. Один из наиболее распространённых элементов, найденных за пределами Земли. Входит в состав белков

Хлор

Cl2

Жёлто-зелёный газ с запахом. Легко сжижается уже при -34°C. При давлении в 0,8 МПа и комнатной температуре становится жидким. Плохо растворяется в воде (1,48 мл/100 г), хорошо растворяется в бензоле и хлороформе

Наиболее распространённый галоген. В природе встречается только в составе минералов

Углекислый газ

CO2

Бесцветный газ, не имеющий запаха при малых концентрациях. В большом количестве имеет кислый запах. В 1,5 раза тяжелее воздуха. Кристаллизуется при -78,3°С. Жидкое состояние получают при комнатной температуре и давлении в 6 МПа

В атмосфере содержится меньше 1 %

Аммиак

NH3

Бесцветный газ с резким запахом. В два раза тяжелее воздуха. Хорошо растворяется в воде

Образуется путём разложения азотсодержащих веществ

За счёт свободного движения молекул газ равномерно распространяется в ограниченном пространстве. Такое явление называется диффузией. Яркий пример диффузии – распространение запахов. При приготовлении пищи на кухне запах постепенно распространяется по всей квартире.

Что мы узнали?

Газ – вещество, состоящее из хаотично движущихся частиц – молекул или атомов. Газообразные соединения можно получить выделением из атмосферы путём адсорбции и окисления. Также газ получают из жидких и твёрдых веществ путём изменения условий или взаимодействием простых и сложных веществ. Газы не имеют формы, легко смешиваются между собой и равномерно распределяются в закрытом пространстве. Наиболее распространённый газ в атмосфере – азот. Самый лёгкий газ.

  1. /10

    Вопрос 1 из 10

    Как располагаются молекулы в газе?

    • Упорядоченно, на больших расстояниях друг от друга, двигаясь в определённом порядке
    • Упорядоченно, на больших расстояниях друг от друга, статично
    • Свободно, на больших расстояниях друг от друга, хаотично двигаясь
    • Свободно, на больших расстояниях друг от друга, двигаясь в определённом порядке

Взаимодействия

Взаимодействия в газообразном состоянии незначительны. В этом он сильно отличается от жидкого и твердого состояний, в которых его частицы обладают высокой степенью сцепления и сильно взаимодействуют друг с другом. В молекулах, образующих жидкое и твердое состояния, едва ли существует определенный молекулярный вакуум между ними.

Частицы в газообразном состоянии очень далеко друг от друга, между ними большой вакуум. Это уже не вакуум в молекулярном масштабе. Расстояние, которое их разделяет, настолько велико, что каждая частица в газе свободна, безразлична к своему окружению, если только по своей хаотической траектории она не сталкивается с другой частицей или о стенку контейнера.

Если предположить, что контейнера нет, вакуум между частицами газа может быть заполнен воздухом, который толкает и увлекает газ в направлении его потока. Вот почему воздух, состоящий из газовой смеси, способен деформировать и разносить газообразные вещества по небу, если они не намного плотнее его.

Твёрдое состояние

Если у жидкости, в отличие от газа, молекулы движутся уже не хаотически, а вокруг определенных центров, то в твёрдом агрегатном состоянии вещества атомы и молекулы имеют четкую структуру и похожи на построенных солдат на параде. И благодаря кристаллической решетке твердые вещества занимают определенный объем и имеют постоянную форму.

Между твердыми и жидкими телами существует промежуточная группа аморфных веществ, представители которой с одной стороны за счет высокой вязкости долго сохраняют свою форму, а с другой – частицы в нем строго не упорядочены и находятся в особом конденсированном состоянии. К аморфным веществам относится целый ряд веществ: смола, стекло, янтарь, каучук, полиэтилен, поливинилхлорид, полимеры, сургуч, различные клеи, эбонит и пластмассы. Про аморфные тела подробно можно прочитать на странице 40 учебника «Химия 7 класс» под редакцией О.С. Габриеляна.

При определенных условиях вещества, находящиеся в агрегатном состоянии жидкости, могут переходить в твердое, а твердые тела, наоборот, при нагревании плавиться и переходить в жидкое.

Это происходит потому, что при нагревании увеличивается внутренняя энергия, соответственно молекулы начинают двигаться быстрее, а при достижении температуры плавления кристаллическая решетка начинает разрушаться и изменяется агрегатное состояние вещества. У большинства кристаллических тел объем увеличивается при плавлении, но есть исключения, например – лед, чугун.

В зависимости от вида частиц, образующих кристаллическую решетку твердого тела, выделяют следующую структуру:

  • молекулярную,

  • атомную,

  • металлическую.

У одних веществ изменение агрегатных состояний происходит легко, как, например, у воды, для других веществ нужны особые условия (давление, температура). Но в современной физике ученые выделяют еще одно независимое состояние вещества — плазма.

Плазма — ионизированный газ с одинаковой плотностью как положительных, так и отрицательных зарядов. В живой природе плазма есть на солнце, или при вспышке молнии. Северное сияние и даже привычный нам костер, согревающий своим теплом во время вылазки на природу, также относится к плазме.

Искусственно созданная плазма добавляет яркости любому городу. Огни неоновой рекламы — это всего лишь низкотемпературная плазма в стеклянных трубках. Привычные нам лампы дневного света тоже заполнены плазмой.

Плазму делят на низкотемпературную — со степенью ионизации около 1% и температурой до 100 тысяч градусов, и высокотемпературную — ионизация около 100% и температурой в 100 млн градусов (именно в таком состоянии находится плазма в звездах).

Низкотемпературная плазма в привычных нам лампах дневного света широко применяется в быту.

Высокотемпературная плазма используется в реакциях термоядерного синтеза и ученые не теряют надежду использовать ее в качестве замены атомной энергии, однако контроль в этих реакциях очень сложен. А неконтролируемая термоядерная реакция зарекомендовала себя как оружие колоссальной мощности, когда 12 августа 1953 года СССР испытал термоядерную бомбу.

Для проверки усвоения материала предлагаем небольшой тест.

1. Что не относится к агрегатным состояниям:

  • жидкость

  • газ

  • свет +

2. Вязкость ньютоновских жидкостей подчиняется:

  • закону Бойля-Мариотта

  • закону Архимеда

  • закону вязкости Ньютона +

3. Почему атмосфера Земли не улетает в открытый космос:

  • потому что молекулы газа не могут развить вторую космическую скорость

  • потому что на молекулы газа воздействует сила земного притяжения +

  • оба ответа правильные

4. Что не относится к аморфным веществам:

  • сургуч
  • стекло

  • железо +

5.При охлаждении объем увеличивается у:

  • янтаря

  • льда +

  • сахара

Простые вещества среди газов

Какие по строению и структуре газы относятся к данной категории, мы уже оговаривали выше. Это те, что состоят из одинаковых атомов. Примеров можно привести много, ведь значительная часть неметаллов из всей периодической системы при обычных условиях существует именно в таком агрегатном состоянии. Например:

  • фосфор белый — одна из данного элемента;
  • азот;
  • кислород;
  • фтор;
  • хлор;
  • гелий;
  • неон;
  • аргон;
  • криптон;
  • ксенон.

Молекулы этих газов могут быть как одноатомными (благородные газы), так и многоатомными (озон — О 3). Тип связи — ковалентная неполярная, в большинстве случаев достаточно слабая, но не у всех. Кристаллическая решетка молекулярного типа, что позволяет этим веществам легко переходить из одного агрегатного состояния в другое. Так, например, йод при обычных условиях — темно-фиолетовые кристаллы с металлическим блеском. Однако при нагревании сублимируются в клубы ярко-фиолетового газа — I 2 .

К слову сказать, любое вещество, в том числе металлы, при определенных условиях могут существовать в газообразном состоянии.

Понравилась статья? Поделиться с друзьями:
Умный ребенок
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: