Нахождение алканов в природе кратко

Акція для всіх передплатників кейс-уроків 7w!

Применение

Алканы выделяют из полезных ископаемых – нефти, газа, каменного угля. На разных этапах переработки получают бензин, керосин, мазут. Алканы используются в медицине, косметологии, строительстве.

Рис. 2. Нефть содержит жидкие алканы.

В таблице описаны основные области применения предельных углеводородов.

Область

Что используют

Как используют

Энергетическая промышленность

Бензин, керосин, мазут

В качестве ракетного, моторного топлива

Газообразные алканы

В качестве бытового газа для приготовления пищи

Химическая промышленность

Петролейный эфир (смесь изопентанов и изогексанов),

Изготовление растворителей, смазочных масел, пропитки

Парафин

Изготовление вазелинового масла (смесь жидких алканов), вазелина (смесь жидких и твёрдых алканов), свечей, моющих средств, лаков, эмалей, мыла. В качестве пропитки спичек. Использование при производстве органических кислот

Хлорпроизводные алканы

Изготовление спиртов, альдегидов, кислот

Косметология

Вазелин, вазелиновое масло

Производство мазей

Газы

В качестве пропеллентов для изготовления аэрозолей

Сквалан

Изготовление увлажняющих косметических средств

Строительство

Гудрон (дёготь) – конечный продукт переработки нефти, содержащий смесь алканов, циклоалканов, аренов, металлов, неметаллов

Для изготовления асфальтовых дорог

Бумажно-целлюлозная промышленность

Парафин

В качестве пропитки упаковочной бумаги

Пищевая промышленность

Парафин

Производство жевательных резинок

Рис. 3. Гудрон.

Алканы используются при изготовлении каучука, синтетических тканей, пластмасс, поверхностно-активных веществ. В качестве заправки баллонов для тушения пожаров используются пропан и бутан в сжиженном виде.

Что мы узнали?

Узнали кратко об области применения алканов. Насыщенные углеводороды в газообразном, жидком, твёрдом состоянии используются в химической, пищевой, бумажной, энергетической отраслях, в косметологии и строительстве. Из алканов производят растворители, краски, лаки, мыло, свечи, мази, асфальт. Бензин, керосин, мазут, состоящие из жидких алканов, используют в качестве топлива. Газообразные алканы применяются в быту и для производства аэрозолей. Основные источники алканов – нефть, природный газ, каменный уголь.

  1. /5

    Вопрос 1 из 5

Основы номенклатуры

1. Выбор главной цепи.
Формирование названия углеводорода начинается с определения главной цепи — самой длинной цепочки атомов углерода в молекуле, которая является как бы ее основой.2. Нумерация атомов главной цепи.
Атомам главной цепи присваивают номера. Нумерация атомов главной цепи начинается с того конца, к которому ближе стоит заместитель (структуры А, Б). Если заместители находятся на равном удалении от конца цепи, то нумерация начинается от того конца, при котором их больше (структура В). Если различные заместители находятся на равном удалении от концов цепи, то нумерация начинается с того конца, к которому ближе старший (структура Г). Старшинство углеводородных заместителей определяется по тому, в каком порядке следует в алфавите буква, с которой начинается их название: метил (-СН 3), затем этил (-СН 2 -СН 3), пропил (-СН 2 -СН 2 -СН 3) и т

д.
Обратите внимание на то, что название заместителя формируется заменой суффикса -ан на суффикс —ил
в названии соответствующего алкана.
3. Формирование названия

В начале названия указывают цифры — номера атомов углерода, при которых находятся заместители. Если при данном атоме находятся несколько заместителей, то соответствующий номер в названии повторяется дважды через запятую (2,2-). После номера через дефис указывают количество заместителей (ди
— два, три
— три, тетра
— четыре, пента
— пять) и название заместителя (метил, этил, пропил). Затем без пробелов и дефисов — название главной цепи. Главная цепь называется как углеводород — член гомологического ряда метана (метан
СН 4 , этан
С 2 Н 6 , пропан
C 3 H 8 , С 4 Н 10, пентан
С 5 Н 12 , гексан
С 6 Н 14 , гептан
C 7 H 16, октан
C 8 H 18, нонан
С 9 Н 20, декан
С 10 Н 22).

Спектральные свойства

ИК-спектроскопия

В ИК-спектрах алканов четко проявляются частоты валентных колебаний связи С—Н в области 2850—3000 см−1. Частоты валентных колебаний связи С—С переменны и часто малоинтенсивны. Характеристические деформационные колебания в связи С—Н в метильной и метиленовой группах обычно лежат в интервале 1400—1470 см−1, однако метильная группа даёт в спектрах слабую полосу при 1380 см−1.

УФ-спектроскопия

Чистые алканы не поглощают излучение в ультрафиолетовой области выше 2000 Å и по этой причине часто оказываются отличными растворителями для измерения УФ-спектров других соединений.

ПРИМЕНЕНИЕ АЛКАНОВ

Предельные углеводороды находят
широкое применение в самых разнообразных сферах жизни и
деятельности человека.

Газообразные алканы используются
в качестве ценного топлива.Жидкие алканы – это бензин, керосин,
жидкость для разжига костров. Из твердых алканов делают свечи.

Метан – является
основным компонентом природных и попутных газов (60-99%). В состав
природных газов входят пропан и бутан.

Благодаря большой теплотворной способности метан в
больших количествах расходуется в быту и в промышленности. Именно он горит в
кухонных плитах и сжигается на теплоэлектростанциях для производства
электроэнергии. В смеси с воздухом метан взровоопасен.

Смесь пропана и бутана используется в качестве
бытового топлива.

Пропан и бутан при повышении давления сжижаются,
поэтому пропаном заправляют балоны для тушения пожаров. Пропан-бутановой смесью
заправляют зажигалки.

Жидкие углеводоpоды составляют
значительную долю в моторных и ракетных топливах и используются в качестве
растворителей.

Большое промышленное значение имеет окисление высших
предельных углеводородов
 – парафинов с числом углеродных атомов 20-25.
Этим путем получают синтетические жирные кислоты с различной длиной цепи,
которые используются для производства мыл, различных моющих средств, смазочных
материалов, лаков и эмалей.

Вазелиновое масло (смесь
жидких углеводоpодов с числом атомов углерода до 15) — пpозpачная жидкость
без запаха и вкуса, используется в медицине, паpфюмеpии и косметике.

Вазелин (смесь
жидких и твеpдых пpедельных углеводоpодов с числом углеpодных атомов до 25)
пpименяется для пpиготовления мазей, используемых в медицине.

Паpафин (смесь
твеpдых углеводоpодов С1935) — белая твеpдая
масса без запаха и вкуса (tпл= 50-70°C) — пpименяется для изготовления
свечей, пpопитки спичек и упаковочной бумаги, для тепловых пpоцедуp в медицине
и т.д.

В современной нефтехимической промышленности предельные
улеводороды являются базой для получения разнообразных органических соединений,
важным сырьем в процессах получения полупродуктов для производства пластмасс,
каучуков, синтетических волокон, моющих средств и многих других веществ.

Нормальные предельные углеводороды средней молекулярной
массы используются как питательный субстрат в микробиологическом синтезе белка
из нефти.

Нахождение в природе и получение

Основные источники алканов – нефть и природный газ.

Метан составляет основную массу природного газа, в нем присутствуют также в небольших количествах этан, пропан и бутан. Метан содержится в выделениях болот и угольных пластов. Наряду с легкими гомологами метан присутствует в попутных нефтяных газах. Эти газы растворены в нефти под давлением и находятся также над ней. Алканы составляют значительную часть продуктов переработки нефти. Содержатся в нефти и циклоалканы – они называются нафтенами (от греч. naphtha – нефть). В природе широко распространены также газовые гидраты алканов, в основном метана, они залегают в осадочных породах на материках и на дне океанов. Их запасы, вероятно, превышают известные запасы природного газа и в будущем могут случить источником метана и его ближайших гомологов. Алканы получают и пиролизом (коксованием) каменного угля и его гидрирования (получение синтетического жидкого топлива). Твердые алканы встречаются в природе в виде залежей горного воска – озокерита, в восковых покрытиях листьев, цветов и семян растений, входят в состав пчелиного воска.

В промышленности алканы получают каталитическим гидрированием оксидов углерода СО

Горный воск

и СО2 (метод Фишера – Тропша). В лаборатории метан можно получить нагреванием ацетата натрия с твердой щелочью: CH3COONa + NaOH → CH4 + Na2CO3, а также гидролизом некоторых карбидов: Al4C3 + 12H2O→ 3CH4 + 4Al(OH)3. Гомологи метана можно получить по реакции Вюрца, например: 2CH3Br + 2Na→CH3–CH3 + 2NaBr. В случае дигалогеналканов получаются циклоалканы, например: Br–CH2–(CH2)4–CH2Br + 2Na→цикло-C6H12 + 2NaBr. Алканы образуются также при декарбоксилировании карбоновых кислот и при электролизе их.

Нахождение в природе

Нахождение на Земле

Добыча нефти

В земной атмосфере метан присутствует в очень небольших количествах (около 0,0001 %), он производится некоторыми археями (архебактериями), в частности, находящимися в кишечном тракте крупного рогатого скота. Промышленное значение имеют месторождения низших алканов в форме природного газа, нефти и, вероятно, в будущем — газовых гидратов (найдены в областях вечной мерзлоты и под океанами). Также метан содержится в биогазе.

Высшие алканы содержатся в кутикуле растений, предохраняя их от высыхания, паразитных грибков и мелких растительноядных организмов. Это обыкновенно цепи с нечётным числом атомов углерода, образующиеся при декарбоксилировании жирных кислот с чётным количеством углеродных атомов. У животных алканы встречаются в качестве феромонов у насекомых, в частности у мухи цеце (2-метилгептадекан C18H38, 17,21-диметилгептатриаконтан C39H80, 15,19-диметилгептатриаконтан C39H80 и 15,19,23-триметилгептатриаконтан C40H82). Некоторые орхидеи при помощи алканов-феромонов привлекают опылителей.

Электролиз солей карбоновых кислот (электролиз по Кольбе)

Это электролиз водных растворов солей карбоновых кислот.

В общем виде:

2R–COONa + 2H2O → H2 + 2NaOH + 2CO2 + R–R

В водном растворе ацетат натрия практически полностью диссоциирует:

CH3COONa → CH3COO– + Na+

При этом на катод притягиваются катионы натрия Na+ и молекулы воды H2O.

Разряжаться на катоде будут молекулы воды:

Kатод(-):     2H2O + 2e = H2 + 2OH–

 На аноде окисляются ацетат-ионы, а именно, атом углерода карбоксильной группы.

При этом от карбоксильной группы отрывается углекислый газ и остаются метильные радикалы, которые образуют газообразный этан:

Aнод(+):    2CH3COO– – 2e = 2CO2 + CH3–CH3

Суммарное уравнение электролиза водного раствора ацетата натрия:

2CH3COONa + 2H2O = H2 + 2NaOH + 2CO2 + CH3–CH3

Виды изомерии

Различают два основных вида изомерии: структурную и пространственную (стереоизомерию).

   Структурные изомеры отличаются друг от друга взаимным расположением атомов в молекуле;  стереоизомеры — расположением атомов в пространстве.

Структурная изомерия

Структурные изомеры – соединения с одинаковым составом, но различным порядком связывания атомов, т.е. с различным химическим строением. Молекулярная формула у структурных изомеров одинаковая, а структурная различается.

1. Изомерия углеродного скелета: вещества различаются строением углеродной цепи, которая может быть линейная или разветвленная.

Например, молекулярной формуле С5Н12 соответствуют три изомера:

2. Изомерия положения обусловлена различным положением кратной связи, функциональной группы или заместителя при одинаковом углеродном скелете молекул.

2.1. Изомерия положения функциональной группы. Например, существует два изомерных предельных спирта с общей формулой С3Н8О: пропанол-1 (н-пропиловый спирт) пропанол-2 (изопропиловый спирт):

2.2. Изомерия положения кратной связи может быть вызвана различным положением кратной (двойной или тройной)  связи в непредельных соединениях. Например, в бутене-1 и бутене-2:

2.3. Межклассовая изомерия – ещё один вид структурной изомерии, когда вещества из разных классов веществ имеют одинаковую общую формулу.

Например, формуле С2Н6О соответствуют: спирт (этанол) и простой эфир (диметиловый эфир):

Пространственная изомерия

Пространственные изомеры – это вещества с одинаковым составом и химическим строением, но с разным пространственным расположением атомов в молекуле. Виды пространственной изомерии – геометрическая (цис—транс) и оптическая изомерия.

1. Геометрическая изомерия (или цис-транс-изомерия)

Геометрическая изомерия характерна для соединений, в которых различается положение заместителей относительно плоскости двойной связи или цикла.

Например, для алкенов и циклоалканов.

Двойная связь не имеет свободного вращения вокруг своей оси.

Поэтому заместители у атомов углерода при двойной связи могут быть расположены либо по одну сторону от плоскости двойной связи (цис-изомер), либо по разные стороны от плоскости двойной связи (транс-изомер). При этом никаким вращением нельзя получить из цис-изомера транс-изомер, и наоборот.

Например, бутен-2 существует в виде цис— и транс-изомеров

1,2-Диметилпропан также образует цис-транс-изомеры:

Геометрические изомеры различаются по физическим свойствам (температура кипения и плавления, растворимость, дипольный момент и др.). Например, температура кипения цис-бутена-2 составляет 3,73 оС, а транс-бутена-2 0,88оС.

Например, в молекуле бутена-1 CH2=CH-CH2-CH3 заместители у первого атома углерода при двойной связи (два атома водорода) одинаковые, и цис—транс-изомеры бутен-1 не образует. А вот в молекуле бутена-2 CH3—CH=CH-CH3 заместители у каждого атома углерода при двойной связи разные (атом водорода и метильная группа CH3), поэтому бутен-2 образует цис— и транс-изомеры.

Таким образом, для соединений вида СH2=СHR и СR2=СHR’ цис—транс-изомерия не характерна.

2. Оптическая изомерия

Оптические изомеры – это пространственные изомеры, молекулы которых соотносятся между собой как предмет и несовместимое с ним зеркальное изображение.

Оптическая изомерия свойственна молекулам веществ, имеющих асимметрический атом углерода.

Асимметрический атом углерода — это атом углерода, связанный с четырьмя различными заместителями.

Такие молекулы обладают оптической активностью — способностью к вращению плоскости поляризации света при прохождении поляризованного луча через раствор вещества.

Например, оптические изомеры образует 3-метилгексан:

Классификация органических соединений

Классификацию органических веществ определяют строение углеродной цепи (углеродного скелета) и наличие и особенности строения функциональных групп.

Углеродный скелет – это последовательность соединенных между собой атомов углерода в органической молекуле.
Функциональная группа – это атом или группа атомов, которая определяет принадлежность молекулы к определенному классу органических веществ и химические свойства, соответствующие данному классу веществ.

Классификация органических веществ по составу

Углеводороды Кислородсодержащие вещества Азотсодержащие вещества
Состоят из атомов углерода и водорода Содержат также атомы кислорода Содержат также атомы азота

Химические свойства алканов

Реакции замещения.

Наиболее характерными для алканов являются реакции свободнорадикаль­ного замещения, в ходе которого атом водорода за­мещается на атом галогена или какую-либо группу.

Приведем уравнения характерных реакций галогенирования:

В случае избытка галогена хлорирование может пойти дальше, вплоть до полного замещения всех атомов водорода на хлор:

Полученные вещества широко используются как растворители и исходные вещества в органи­ческих синтезах.

Реакция дегидрирования (отщепления водоро­да).

В ходе пропускания алканов над катализато­ром (Pt, Ni, Al2O3, Cr2O3) при высокой температуре (400-600 °C) происходит отщепление молекулы во­дорода и образование алкена:

Реакции, сопровождающиеся разрушением углеродной цепи. Все предельные углеводороды горят с образованием углекислого газа и воды. Га­зообразные углеводороды, смешанные с воздухом в определенных соотношениях, могут взрываться.

1. Горение предельных углеводородов — это сво­боднорадикальная экзотермическая реакция, кото­рая имеет очень большое значение при использова­нии алканов в качестве топлива:

В общем виде реакцию горения алканов можно записать следующим образом:

2. Термическое расщепление углеводородов.

Процесс протекает по свободнорадикальному механизму. Повышение температуры приводит к гомолитическому разрыву углерод-углеродной связи и образованию свободных радикалов.

Эти радикалы взаимодействуют между собой, обмениваясь атомом водорода, с образованием мо­лекулы алкана и молекулы алкена:

Реакции термического расщепления лежат в ос­нове промышленного процесса — крекинга угле­водородов. Этот процесс является важнейшей ста­дией переработки нефти.

3. Пиролиз. При нагревании метана до темпе­ратуры 1000 °С начинается пиролиз метана — раз­ложение на простые вещества:

При нагревании до температуры 1500 °С воз­можно образование ацетилена:

4. Изомеризация. При нагревании линейных углеводородов с катализатором изомеризации (хло­ридом алюминия) происходит образование веществ с разветвленным углеродным скелетом:

5. Ароматизация. Алканы с шестью или более углеродными атомами в цепи в присутствии ка­тализатора циклизуются с образованием бензола и его производных:

Алканы вступают в реакции, протекающие по свободнорадикальному механизму, т. к. все атомы углерода в молекулах алканов находятся в состоянии sp3-гибридизации. Молекулы этих веществ по­строены при помощи ковалентных неполярных С—С (углерод — углерод) связей и слабополярных С—Н (углерод — водород) связей. В них нет участков с повышенной и с пониженной электронной плотностью, легко поляризуемых связей, т. е. таких связей, электронная плотность в которых может смещаться под действием внешних факторов (элек­тростатических полей ионов). Следовательно, алка­ны не будут реагировать с заряженными частицами, т. к. связи в молекулах алканов не разрываются по гетеролитическому механизму.

Гомологический ряд и изомерия

Алканы образуют гомологический ряд.

Гомологический ряд алканов (первые 10 членов)
Метан CH4 CH4
Этан CH3—CH3 C2H6
Пропан CH3—CH2—CH3 C3H8
Бутан CH3—CH2—CH2—CH3 C4H10
Пентан CH3—CH2—CH2—CH2—CH3 C5H12
Гексан CH3—CH2—CH2—CH2—CH2—CH3 C6H14
Гептан CH3—CH2—CH2—CH2—CH2—CH2—CH3 C7H16
Октан CH3—CH2—CH2—CH2—CH2—CH2—CH2—CH3 C8H18
Нонан CH3—CH2—CH2—CH2—CH2—CH2—CH2—CH2—CH3 C9H20
Декан CH3—CH2—CH2—CH2—CH2—CH2—CH2—CH2—CH2—CH3 C10H22

Алканы, число атомов углерода в которых больше трёх, имеют изомеры. Изомерия предельных углеводородов обусловлена простейшим видом структурной изомерии — изомерией углеродного скелета, а начиная с C7H16 — также оптической изомерией. Число структурных изомеров алканов CnH2n+2 в зависимости от числа атомов углерода n без учёта стереоизомерии и с учётом стереоизомерии:

n Число изомеров С учётом стереоизомерии
4 2
5 3
6 5
7
8
9
10
11 159 345
12 355 900
13 802 2412
14 1858 6563
15 4347 18 127
20 366 319 3 396 844
25 36 797 588 749 329 719
30 4 111 846 763 182 896 187 256

Число структурных изомеров низших углеводородов до C14H30 было установлено прямым подсчётом; в 1931 году был разработан рекурсивный метод подсчёта числа изомеров. Какой-либо простой связи между числом атомов углерода n и числом изомеров обнаружено не было. При \displaystyle{ n \rightarrow \mathcal {1} } число различных структурных изомеров алканов можно оценить посредством теоремы Редфилда — Пойи.

Что такое алканы

Алканы представляют собой предельные углеводороды, имеющие лишь одинарные взаимосвязи, объединяющие атомы С-С в молекуле. Таким образом, объем водорода в этом случае соответствует максимальным значениям.

Изобразить химическую структуру вещества можно с помощью следующей схемы:

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут

При  исследовании алкановых молекул можно обнаружить химические взаимосвязи С-Н и С-С. В первом случае допустимо говорить о слабой полярности ковалентной связи. Следующая связь С-С является ковалентной и неполярной. Перечисленные взаимосвязи определяются как одинарные \(\sigma–связи\). С помощью углеродных атомов в веществе формируется по две пары \(\sigma–связи\). В результате формируется следующая схема гибридизации углеродных атомов в алкановых молекулах — \(sp^{3}\). Изобразить ее можно таким способом:

В процессе формирования связи С-С наблюдается перекрытие \(sp^{3}-гибридных\) орбиталей углеродных атомов. Происходит это таким образом:

Образование взаимосвязи С-Н сопровождается перекрытием \(sp^{3}-гибридной\) орбитали углеродного атома и s-орбитали водородного атома. Изобразить этот процесс наглядно можно с помощью схемы:

Анализ \(sp^{3}-гибридных\) орбиталей углеродного атома позволяет выявить их отталкивание относительно друг друга. Рассматриваемые орбитали расположены по отношению к друг другу под самым большим из всех вероятных углов. По этой причине угол между гибридными орбиталями, которых две пары в углеродном атоме в алканах, соответствует 109 градусам и 28 минутам. Наглядно положение изображено на схеме ниже:

Исходя из вышесказанного, следует сделать вывод о том, что молекула построена в форме тетраэдра.

Практическое значение алканов

Понятны в этой связи две основные области применения алканов — в качестве высококалорийного топлива, прежде всего моторного, потребность в котором постоянно растет в мире, и как важнейшее промышленное сырье для получения самых разнообразных химических продуктов.

В обоих качествах алканам в ближайшее время приемлемой альтернативы нет. В ряду углеродсодержащих органических природных продуктов (уголь, торф, древесина, нефть, газ) последние два наиболее насыщены водородом и являются по этой причине наиболее удобным и дешевым сырьем в органическом синтезе. Переход промышленности органического синтеза на это сырье в первой половине XX века позволил качественно обновить и расширить ассортимент химической продукции, значительно снизив ее себестоимость.

Химические свойства

1.    Реакции замещения. Наиболее характерными для ал-канов являются реакции свободнорадикального замещения, в ходе которых атом водорода замещается на атом галогена или какую-либо группу.Приведем уравнения наиболее характерных реакций.Галогенирование:СН4 + С12 —> СН3Сl + HClВ случае избытка галогена хлорирование может пойти дальше, вплоть до полного замещения всех атомов водорода на хлор:СН3Сl + С12 —> HCl + СН2Сl2дихлорметан хлористый метиленСН2Сl2 + Сl2 —> HCl + CHCl3трихлорметан хлороформСНСl3 + Сl2 —> HCl + ССl4тетрахлорметан четыреххлористый углеродПолученные вещества широко используются как растворители и исходные вещества в органических синтезах.2.    Дегидрирование (отщепление водорода). При пропускании алканов над катализатором (Pt, Ni, А1203, Сг2O3) при высокой температуре (400—600 °С) происходит отщепление молекулы водорода и образование алкена:СН3—СН3 —> СН2=СН2 + Н23.    Реакции, сопровождающиеся разрушением углеродной цепи. Все предельные углеводороды горят с образованием углекислого газа и воды. Газообразные углеводороды, смешанные с воздухом в определенных соотношениях, могут взрываться. Горение предельных углеводородов — это свободнора-дикальная экзотермическая реакция, которая имеет очень большое значение при использовании алканов в качестве топлива.СН4 + 2O2 —> С02 + 2Н2O + 880кДж

В общем виде реакцию горения алканов можно записать следующим образом:

Реакции термического расщепления лежат в основе промышленного процесса — крекинга углеводородов. Этот процесс является важнейшей стадией переработки нефти.При нагревании метана до температуры 1000 °С начинается пиролиз метана — разложение на простые вещества. При нагревании до температуры 1500 °С возможно образование ацетилена.4. Изомеризация. При нагревании линейных углеводородов с катализатором изомеризации (хлоридом алюминия) происходит образование веществ с разветвленным углеродным скелетом:

5. Ароматизация. Алканы с шестью или более углеродными атомами в цепи в присутствии катализатора циклизуются с образованием бензола и его производных:

В чем причина того, что алканы вступают в реакции, протекающие по свободнорадикальному механизму? Все атомы углерода в молекулах алканов находятся в состоянии sр3-гибридизации. Молекулы этих веществ построены при помощи ковалентных неполярных С—С (углерод—углерод) связей и слабополярных С—Н (углерод—водород) связей. В них нет участков с повышенной и пониженной электронной плотностью, легко поляризуемых связей, т. е. таких связей, электронная плотность в которых может смещаться под действием внешних воздействий (электростатических полей ионов). Следовательно, алканы не будут реагировать с заряженными частицами, так как связи в молекулах алканов не разрываются по гетеролитическому механизму.Наиболее характерными реакциями алканов являются реакции свободнорадикального замещения. В ходе этих реакций атом водорода замещается на атом галогена или какую-либо группу.Кинетику и механизм свободнорадикальных цепных реакций, т. е. реакций, протекающих под действием свободных радикалов — частиц, имеющих неспаренные электроны, — изучал замечательный русский химик Н. Н. Семенов. Именно за эти исследования ему была присуждена Нобелевская премия по химии.Обычно механизм реакции свободнорадикального замещения представляют тремя основными стадиями:1.    Инициирование (зарождение цепи, образование свободных радикалов под действием источника энергии — ультрафиолетового света, нагревания).2.    Развитие цепи (цепь последовательных взаимодействий свободных радикалов и неактивных молекул, в результате которых образуются новые радикалы и новые молекулы).3.    Обрыв цепи (объединение свободных радикалов в неактивные молекулы (рекомбинация), «гибель» радикалов, прекращение развития цепи реакций).

Алканы

Алканы – это углеводороды, в которых все связи одинарные. Также их называют предельными (или насыщенными) углеводородами.

Все атомы углерода находятся в sp3-гибридизации.

Чтобы указать элементарный состав алканов, используют общую формулу: CnH2n+2 .

Для примера рассмотрим, каким образом можно записать несколько элементарных формул, в которых 1,2 и 3 атомов углерода.

Пользуясь выражением CnH2n+2, запишем:

Рисунок 1 – Гибридизация алканов

Следует заметить, что у алканов наблюдается структурная изомерия:

Номенклатура алканов

Номенклатура – это правило, по которому даются названия органическим веществам.

Для того, чтобы назвать молекулу органического вещества, необходимо учесть длину углеродной цепи, наличие кратных связей в молекуле, количество заместителей и их состав, а также наличие функциональных групп.

Заместители могут быть представлены атомами галогенов (хлор, бром, иод, фтор) или углеводородной частицей, которую называют «радикалом».

Понятие радикала

Радикал – углеводородная частица, в которой 1 из атомов углерода содержит 1 неспаренный электрон. Этот неспаренный электрон может образовать связь с углеродной цепочкой, функциональной группой или другим атомом. Для записи радикала используют символ: R, и в общем случае называют алкилом.

Название радикала зависит от количества атомов углерода в нем, для каждого из которых был предложен собственный корень. К корню добавляется суффикс –ил, тем самым образуя полное название радикала.

В таблице 1 представлено, какие корни используются для названия веществ, содержащих конкретное число атомов в углеродной цепочке.

Таблица 1. – Названия углеводородных заместителей

Для названия ряда алканов используется тот же метод, только вместо суффикса –ил, ставится суффикс –ан.

 

Представленный ряд веществ одного класса соединений называется гомологическим рядом (в нем каждый последующий элемент, называемый гомологом, отличается от предыдущего на 1 группу СН2).

Алгоритм названия алканов с заместителями

Чтобы назвать алкан, у которого есть один или несколько заместителей, следует придерживаться следующего алгоритма:

  1. Выбирается самый длинный участок углеродного скелета, и нумеруются атомы углерода.
  2. Нумерация, в соответствии с правилом, начинается с того конца, к которому заместитель ближе.Называть молекулу начинают с номера атома углерода, у которого стоит заместитель и его названия. Если одинаковых заместителей несколько, то сначала через запятые указываются номера атомов углерода, при которых стоит этот заместитель, а затем через дефис записывается число заместителя и его название. Числа записывают так, как указано в таблице 2.
  3. В соответствии с числом пронумерованных атомов углерода выбирается корень названия радикала.
  4. К концу корня приписывается суффикс –ан.

Таблица 2. – число и его запись при перечислении заместителей

Для примера назовем молекулу алкана в соответствии с алгоритмом.

Допустим, есть молекула, которая имеет вид:

  1. Находим самую длинную цепь и нумеруем атомы углерода в ней.

  1. Видим, что в молекуле есть заместители, смотрим: какие они и у каких атомов стоят. Видно, что у 2 и 8 атома стоят метил-радикалы, а у 5 атома – пропил-радикал.Записываем начало названия молекулы: 2,8-диметил-5-пропил.
  2. Теперь необходимо поставить корень и суффикс названия. Корень зависит от числа атомов углерода в цепочке. Здесь их 9, поэтому корень нон-. Так как у нас алкан, то суффикс – -ан.
  3. Запишем полное название:2,8-диметил-5-пропилнонан.

Галоген производные алканов

Галогенпроизводные алканов (их еще называют алкилгалонегидами) – вещества, у которых есть заместитель в виде атома галогена.

Более строгое понятие: алкилгалогенид – это углеводород, у которого 1 или более атомов водорода замещен на атом галогена.

Номенклатура галогенпроизводных алканов такая же, как и у алканов, только в качестве заместителя нужно указывать название галогена.

Например, названия веществ А и Б:2,3-дихлорбутан и 2-метил-3-хлорбутан.

Номенклатура органических соединений

Рекомендуем посмотреть наш гайд по названию органических веществ!

В начале развития орга­нической химии открывае­мым соединениям присваи­вались тривиальные назва­ния, часто связанные с исто­рией их получения: уксусная кислота (являющаяся осно­вой винного уксуса), масля­ная кислота (образующаяся в сливочном масле), гликоль (т. е. «сладкий») и т. д. По мере увеличения числа новых открытых веществ возникла необходимость связывать названия с их строением. Так появи­лись рациональные названия: метиламин, диэти­ламин, этиловый спирт, метилэтилкетон, в основе которых лежит название простейшего соединения. Для более сложных соединений рациональная но­менклатура непригодна.

Теория строения А. М. Бутлерова дала основу для классификации и номенклатуры органических соединений по структурным элементам и по распо­ложению атомов углерода в молекуле. В настоящее время наиболее употребляемой является номен­клатура, разработанная Международным союзом теоретической и прикладной химии (IUPAC), кото­рая называется номенклатурой ИЮПАК. Правила ИЮПАК рекомендуют для образования названий несколько принципов, один из них — принцип замещения. На основе этого разработана замести­тельная номенклатура, которая является наиболее универсальной. Приведем несколько основных правил заместительной номенклатуры и рассмо­трим их применение на примере гетерофункцио­нального соединения, содержащего две функцио­нальные группы, — аминокислоты лейцина:

1. В основе названия соединений лежит родо­начальная структура (главная цепь ациклической молекулы, карбоциклическая или гетероцикличес­кая система). Название родоначальной структуры составляет основу названия, корень слова.

В данном случае родоначальной структурой яв­ляется цепь из пяти атомов углерода, связанных одинарными связями. Таким образом, коренная часть названия — пентан.

2. Характеристические группы и заместители (структурные элементы) обозначаются префикса­ми и суффиксами. Характеристические группы подразделяются по старшинству. Порядок стар­шинства основных групп:

Выявляют старшую характеристическую груп­пу, которую обозначают в суффиксе. Все остальные заместители называют в префиксе в алфавитном по­рядке.

В данном случае старшей характеристической группой является карбоксильная, т. е. это соеди­нение относится к классу карбоновых кислот, по­этому к коренной части названия добавляем -овая кислота. Второй по старшинству группой являет­ся аминогруппа, которая обозначается префиксом амино-. Кроме этого, молекула содержит углево­дородный заместитель метил-. Таким образом, ос­новой названия является аминометилпентановая кислота.

3.     В название включают обозначение двойной и тройной связи, которое идет сразу после корня.

Рассматриваемое соединение не содержит крат­ных связей.

4.     Атомы родоначальной структуры нумеруют. Нумерацию начинают с того конца углеродной це­пи, к которому ближе расположена старшая ха­рактеристическая группа:

Нумерацию цепи начинают с атома углерода, входящего в состав карбоксильной группы, ему присваивается номер 1. В этом случае аминогруп­па окажется при углероде 2, а метил — при угле­роде 4.

Таким образом, природная аминокислота лей­цин по правилам номенклатуры ИЮПАК называ­ется 2-амино-4-метилпентановая кислота.

Понравилась статья? Поделиться с друзьями:
Умный ребенок
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: